• Title/Summary/Keyword: Data Inference

Search Result 1,332, Processing Time 0.029 seconds

Uncertainty reduction of seismic fragility of intake tower using Bayesian Inference and Markov Chain Monte Carlo simulation

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.47-53
    • /
    • 2017
  • The fundamental goal of this study is to minimize the uncertainty of the median fragility curve and to assess the structural vulnerability under earthquake excitation. Bayesian Inference with Markov Chain Monte Carlo (MCMC) simulation has been presented for efficient collapse response assessment of the independent intake water tower. The intake tower is significantly used as a diversion type of the hydropower station for maintaining power plant, reservoir and spillway tunnel. Therefore, the seismic fragility assessment of the intake tower is a pivotal component for estimating total system risk of the reservoir. In this investigation, an asymmetrical independent slender reinforced concrete structure is considered. The Bayesian Inference method provides the flexibility to integrate the prior information of collapse response data with the numerical analysis results. The preliminary information of risk data can be obtained from various sources like experiments, existing studies, and simplified linear dynamic analysis or nonlinear static analysis. The conventional lognormal model is used for plotting the fragility curve using the data from time history simulation and nonlinear static pushover analysis respectively. The Bayesian Inference approach is applied for integrating the data from both analyses with the help of MCMC simulation. The method achieves meaningful improvement of uncertainty associated with the fragility curve, and provides significant statistical and computational efficiency.

Fuzzy Identification by means of Fuzzy Inference Method and its Optimization by GA (퍼지 추론 방법을 이용한 퍼지 동정과 유전자 알고리즘에 의한 이의 최적화)

  • Park, Byoung-Jun;Park, Chun-Seong;Ahn, Tae-Chon;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.563-565
    • /
    • 1998
  • In this paper, we are proposed optimization method of fuzzy model in order to complex and nonlinear system. In the fuzzy modeling, a premise identification is very important to describe the charateristics of a given unknown system. Then, the proposed fuzzy model implements system structure and parameter identification, using the fuzzy inference method and genetic algorithms. Inference method for fuzzy model presented in our paper include the simplified inference and linear inference. Time series data for gas furance and sewage treatment process are used to evaluate the performance of the proposed model. Also, the performance index with weighted value is proposed to achieve a balance between the results of performance for the training and testing data.

  • PDF

Knowledge Base Construction of Ship Design Using Fuzzy Equalization and Rough Sets (퍼지균등화와 러프집합을 이용한 선박설계 지식기반 구축)

  • Suh, Kyu-Youl
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.115-119
    • /
    • 2007
  • Inference rules of the knowledge base, generated by experts or optimization, may be often inconsistent and incomplete. This paper suggests a systematic and automatic method which extracts inference rules not from experts' subject but from data. First, input/output linguistic variables are partitioned into several properties by the fuzzy equalization algorithm and each combination of their properties comes to premise of inference rule. Then, the conclusion which is the mast suitable for the premise is selected by evaluating consistent measure. This method, automatically from data, derives inference rules from experience. It is shown through application that extracts new inference rules between hull dimensions and hull performance.

A Study on Accuracy Estimation of Service Model by Cross-validation and Pattern Matching

  • Cho, Seongsoo;Shrestha, Bhanu
    • International journal of advanced smart convergence
    • /
    • v.6 no.3
    • /
    • pp.17-21
    • /
    • 2017
  • In this paper, the service execution accuracy was compared by ontology based rule inference method and machine learning method, and the amount of data at the point when the service execution accuracy of the machine learning method becomes equal to the service execution accuracy of the rule inference was found. The rule inference, which measures service execution accuracy and service execution accuracy using accumulated data and pattern matching on service results. And then machine learning method measures service execution accuracy using cross validation data. After creating a confusion matrix and measuring the accuracy of each service execution, the inference algorithm can be selected from the results.

Small sample likelihood based inference for the normal variance ratio

  • Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.911-918
    • /
    • 2013
  • This study deals with the small sample likelihood based inference for the ratio of two normal variances. The small sample likelihood inference is an approximation method. The signed log-likelihood ratio statistic and the modified signed log-likelihood ratio statistic, which converge to standard normal distribution, are proposed for the normal variance ratio. Through the simulation study, the coverage probabilities of confidence interval and power of the exact, the signed log-likelihood and the modified signed log-likelihood ratio statistic will be compared. A real data example will be provided.

Bayesian Inference for Predicting the Default Rate Using the Power Prior

  • Kim, Seong-W.;Son, Young-Sook;Choi, Sang-A
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.685-699
    • /
    • 2006
  • Commercial banks and other related areas have developed internal models to better quantify their financial risks. Since an appropriate credit risk model plays a very important role in the risk management at financial institutions, it needs more accurate model which forecasts the credit losses, and statistical inference on that model is required. In this paper, we propose a new method for estimating a default rate. It is a Bayesian approach using the power prior which allows for incorporating of historical data to estimate the default rate. Inference on current data could be more reliable if there exist similar data based on previous studies. Ibrahim and Chen (2000) utilize these data to characterize the power prior. It allows for incorporating of historical data to estimate the parameters in the models. We demonstrate our methodologies with a real data set regarding SOHO data and also perform a simulation study.

A Location Context Management Architecture of Mobile Objects for LBS Application

  • Ahn, Yoon-Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.1157-1170
    • /
    • 2007
  • LBS must manage various context data and make the best use of this data for application service in ubiquitous environment. Conventional mobile object data management architecture did not consider process of context data. Therefore a new mobile data management framework is needed to process location context data. In this paper, we design a new context management framework for a location based application service. A suggestion framework is consisted of context collector, context manager, rule base, inference engine, and mobile object context database. It describes a form of rule base and a movement process of inference engine that are based on location based application scenario. It also presents an embodiment instance of interface which suggested framework is applied to location context interference of mobile object.

  • PDF

A New Design of Fuzzy Neural Networks Using Data Information (데이터 정보를 이용한 퍼지 뉴럴 네트워크의 새로운 설계)

  • Park, Keon-Jun;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.273-275
    • /
    • 2006
  • In this paper, we introduce a new design of fuzzy neural networks using input-output data information of target system. The proposed fuzzy neural networks is constructed by input-output data information and used the center of data distance by HCM clustering to obtain the characteristics of data. A membership function is defined by HCM clustering and is applied input-output dat included each rule to conclusion polynomial functions. We use triangular membership functions and simplified fuzzy inference, linear fuzzy inference, and modified quadratic fuzzy inference in conclusion. In the networks learning, back propagation algorithm of network is used to update the parameters of the network. The proposed model is evaluated with benchmark data.

  • PDF

AN INTERPOLATIVE FUZZY INFERENCE METHOD AND ITS APPLICATION

  • SHIMAKAWA, Manabu;MURAKAMI, Shuta
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.556-561
    • /
    • 1998
  • This paper deals with our proposed fuzzy inference method, in which the fuzzy relation is represented by the membership functions of the antecedent and consequent parts, it is not used any fuzzy composition. The strong point of this method is that the membership function of an inferred conclusion has a simple shape and thus its meaning can be interpreted easily. Firstly, the proposed method is explained, and then it is applied to fuzzy modeling of distributed data.

  • PDF

Robust inference for linear regression model based on weighted least squares

  • Park, Jin-Pyo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.2
    • /
    • pp.271-284
    • /
    • 2002
  • In this paper we consider the robust inference for the parameter of linear regression model based on weighted least squares. First we consider the sequential test of multiple outliers. Next we suggest the way to assign a weight to each observation $(x_i,\;y_i)$ and recommend the robust inference for linear model. Finally, to check the performance of confidence interval for the slope using proposed method, we conducted a Monte Carlo simulation and presented some numerical results and examples.

  • PDF