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Abstract

This study deals with the small sample likelihood based inference for the ratio of two
normal variances. The small sample likelihood inference is an approximation method.
The signed log-likelihood ratio statistic and the modified signed log-likelihood ratio
statistic, which converge to standard normal distribution, are proposed for the normal
variance ratio. Through the simulation study, the coverage probabilities of confidence
interval and power of the exact, the signed log-likelihood and the modified signed log-
likelihood ratio statistic will be compared. A real data example will be provided.

Keywords: Likelihood based inference, modified signed log-likelihood ratio statistic,
normal variance ratio, signed log-likelihood ratio statistic.

1. Introduction

The normal distribution plays an important role in statistical inference, and there are so
many studies about this distribution. The statistical inference for the ratio of two normal
variances arises in the areas for comparing the precision of two independent normal popula-
tions. About the ratio of two normal variances, there also exists an exact statistical inference
with F statistic. This problem is simple, obvious and important.

When comparing the dispersion of two normal population, one can use the distribution
table of F statistic. Since F distribution depends on degrees of freedom, the distribution
table of F distribution is more than several pages. For the degrees of freedom exceed 30, the
table does not have the value. In this case, one must use an interpolation to obtaining the
quantile.

An approximation of a statistic to standard normal distribution has been developed in
many statistical models. Since the percentile of standard normal distribution is well known,
a statistic, which distributes as standard normal distribution asymptotically, may be very
useful. But these statistics have the error rate depending on sample size. When the sample
size is small, these approximation to standard normal distribution is quite inaccurate. For
example, a signed log-likelihood ratio statistic converges to standard normal distribution
with an error of O(n−1/2), when the sample size is small, this statistic is inaccurate.
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A modified signed log-likelihood ratio statistic of Barndorff-Nielsen and Cox (1994) con-
verges to standard normal distribution with an error of O(n−3/2). This statistic converges
to standard normal distribution fastly, so even in small sample size, it gives accurate ap-
proximation.

Wu et al. (2002) developed signed log-likelihood statistic and modified signed log-likelihood
statistic for the ratio of means in two independent log-normal distributions. And they showed
that the modified signed log-likelihood statistic worked well in a small sample size.

Wu and Jiang (2007) studied confidence interval of effect size of paired study in normal
distribution, and they developed signed log-likelihood statistic and modified signed log-
likelihood statistic. They compared the length and coverage of confidence interval based on
those statistics to the other approximate confidence interval.

Lee et al. (2006) studied a confidence intervals for the common scale parameer in the
inverse Gaussian distributions. Lee and Lee (2008) developed a likelihood based inference
for the shape parameter of Pareto distribution. Lee et al. (2008) proposed a likelihood based
inference for the shape parameter of inverse Gaussian distribution. They developed modified
signed log-likelihood statistic and showed that this statistic performed well when the sample
size is small. Kang et al. (2012) developed a likelihood based inference for the ratio of
parameters in two Maxwell distributions.

Wong and Wu (2009) considered interval estimation of stress-strength reliability based on
likelihood based inference in generalized exponential distribution. They proposed likelihood
based statistic for reliability and compared coverage probabilities of confidence interval based
on likelihood based statistic with exact confidence interval.

When the parameter of interest is normal variance ratio, this paper devotes to develop a
signed log-likelihood statistic and a modified signed log-likelihood statistic for the parameter
of interest. Even though there exists an exact statistic for this inference, to develop the highly
accurate statistic which converges to standard normal distibution has a practical meaning.

This paper is arranged as follows. In Section 2, the signed log-likelihood statistic and the
modified signed log-likelihood statistic for normal variance ratio are developed. In Section
3, through simulation study, the coverage probabilities of proposed statistics are compared.
And a real data example is given. Concluding remarks are given in Section 4.

2. Likelihood based statistics for normal variance ratio

Let X1, X2, · · · , Xm be a random sample of size m from N(µ1, σ
2
1) and Y1, Y2, · · · , Yn be

a random sample of size n from N(µ2, σ
2
2). Assume that Xi and Yj are independent.

The parameter of interest is σ2
2/σ

2
1 . Statistical inference for this parameter of interest is

well known. The F statistic is used for interval estimation or testing.
Based on observations x = (x1, · · · , xm) and y = (y1, · · · , yn), the likelihood function for

µ1, µ2, σ2
1 and σ2

2 is given by

L(µ1, µ2, σ
2
1 , σ

2
2) ∝ σ−m1 σ−n2 × exp

− 1

2σ2
1

m∑
i=1

(xi − µ1)2 − 1

2σ2
2

n∑
j=1

(yj − µ2)2

 . (2.1)

To develop a statistic for normal variance ratio which converges to standard normal dis-
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tribution, let

θ1 =
σ2
2

σ2
1

, θ2 = σ2
1 , θ3 = µ1, θ4 = µ2

and θ=(θ1, θ2, θ3, θ4)=(ψ, λ), where ψ = θ1 and λ = (θ2, θ3, θ4). Then ψ = θ1 is a parameter
of interest and λ = (θ2, θ3, θ4) is a nuisance parameter. The likelihood function for θ is given
by

L(θ) ∝ θ−
n
2

1 θ
−N

2
2 exp

{
− t1 − 2θ3t3 +mθ23

2θ2
− t2 − 2θ4t4 + nθ24

2θ1θ2

}
, (2.2)

where N = m+n, t1 =
∑m
i=1 x

2
i , t2 =

∑n
j=1 y

2
j , t3 =

∑m
i=1 xi and t4 =

∑n
j=1 yj . From (2.2),

the log-likelihood function for θ is given by

l(θ) ≡ l(θ; t) ∝ −n
2
log(θ1)− N

2
log(θ2)− t1

2θ2
+
θ3t3
θ2
− mθ23

2θ2
− t2

2θ1θ2
+
θ4t4
θ1θ2

− nθ24
2θ1θ2

. (2.3)

In the above log-likelihood (2.3), t = (t1, t2, t3, t4) is a minimal sufficient statistic for θ.
From now on, some notations for developing likelihood based statistic is introduced. Let

for i, j = 1, 2, 3, 4

lθi(θ) =
∂l(θ)

∂θi
, lθiθj (θ) =

∂2l(θ)

∂θi∂θj
,

the sample space derivatives

l;t(θ) =
∂

∂t
l(θ),

the mixed derivatives

lθ;t(θ) =
∂

∂θ
l;t(θ),

for i, j = 1, 2, 3, 4

j(θ) = − ∂
2l(θ)

∂θi∂θj
= −lθiθj (θ),

and for i, j = 2, 3, 4

jλλ(θ) = − ∂
2l(θ)

∂θi∂θj
.

The signed log-likelihood ratio statistic of Cox and Hinkely (1974) is given by

r ≡ r(ψ) = sgn(ψ̂ − ψ)
{

2
[
l(ψ̂, λ̂)− l(ψ, λ̂ψ)

]}1/2

, (2.4)

where θ̂ = (ψ̂, λ̂) is the maximum likelihood estimator of θ, which is obvious, λ̂ψ is the
constrained maximum likelihood estimator of λ = (θ2, θ3, θ4) for a fixed ψ. The elements of
constrained maximum likelihood estimator of λ with fixed ψ is

θ̃2 =
2

N

{
t1
2
− θ̃3t3 +

mθ̃23
2

+
t2

2θ1
− θ̃4t4

θ1
+
nθ̃24
2θ1

}
,

θ̃3 = θ̂3 = t3
m and θ̃4 = θ̂4 = t4

n . That is λ̂ψ=(θ̃2, θ̃3, θ̃4).
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This signed log-likelihood ratio statistic r distributes as standard normal distribution
asymptotically. According to Cox and Hinkely (1974), r converges to standard normal dis-
tribution with the rate of O(n−1/2). For testing the null hypothesis of H0 : ψ = ψ0 with
known value of ψ0, the null hypothesis is rejected if |r(ψ0)| ≥ zα/2, where zα/2 is the up-
per α/2 quantile of standard normal distribution. A two-sided p-value for testing H0 is
approximately 2{1−Φ(|r(ψ0)|)}, where Φ(·) is the distribution function of standard normal
distribution. And the approximate 100(1 − α)% confidence interval for ψ can be obtained
from {

ψ : |r(ψ)| ≤ zα/2
}
. (2.5)

The advantage of r is that this statistic is invariant under reparametrization of ψ. However,
r does not give accurate approximation to standard normal distribution, especially when
the sample size is small.

There exist various ways to improve the accuracy of this approximation by adjusting the
signed log-likelihood ratio statistic. From now on, the modified signed log-likelihood ratio
statistic, known as the r∗, introduced by Barndorff-Nielsen (1986, 1991) is considered. The
modified signed log-likelihood ratio statistic, r∗, has the form

r∗ ≡ r∗(ψ) = r(ψ) + r(ψ)−1 log

{
u(ψ)

r(ψ)

}
, (2.6)

where r(ψ) is given in (2.4) and

u(ψ) =

∣∣∣l;θ̂(θ̂)− l;θ̂(ψ, λ̂ψ) lλ;θ̂(ψ, λ̂ψ)
∣∣∣{∣∣∣j(θ̂)∣∣∣ ∣∣∣jλλ(ψ, λ̂ψ)

∣∣∣}1/2
. (2.7)

In the above u(ψ), following Barndorff-Neilsen (1991), the sample-space derivatives are de-
fined as

l;θ̂(θ) =
∂

∂θ̂
l(θ; θ̂),

the mixed derivatives as

lλ;θ̂(θ) =
∂

∂λ
l;θ̂(θ),

and j(θ̂) is the observed information matrix and jλλ(ψ, λ̂ψ) is the observed nuisance infor-

mation matrix with ψ and constrained maximum likelihood estimate, λ̂ψ.
From the likelihood function of θ given in (2.2), we know that this model is a full rank

exponential model. Also, the log-likelihood function based on data (x,y), given in (2.3) is
only related to a minimum sufficient statistic t. There is a one-to-one transformation between
θ̂ and t, and the Jacobian matrix of this transformation is ∂θ̂/∂t. Therefore, the sample space

derivatives with respect to θ̂ in (2.7) can be derived based on the sample-space derivatives

with respect to t. By using the fact that j(θ̂) = lθ;θ̂(θ̂) and by canceling the determinant of

the transformation Jacobian matrix, u in (2.7) reduces to the following form:

u(ψ) =

∣∣∣l;t(θ̂)− l;t(ψ, λ̂ψ) lλ;t(ψ, λ̂ψ)
∣∣∣∣∣∣lθ;t(θ̂)∣∣∣


∣∣∣j(θ̂)∣∣∣∣∣∣jλλ(ψ, λ̂ψ)
∣∣∣


1/2

,
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where the sample-space derivatives l;t(θ) is a column vector with the following elements :

l;t1(θ) = − 1

2θ2
, l;t2(θ) = − 1

2θ1θ2
, l;t3(θ) =

θ3
θ2
, l;t4(θ) =

θ4
θ1θ2

.

The mixed derivatives lλ;t(θ) and lθ;t(θ) are given by

lλ;t(θ) =


1

2θ22
0 0

1
2θ1θ22

0 0

− θ3
θ22

1
θ2

0

− θ4
θ1θ22

0 1
θ1θ2

 ,
and

lθ;t(θ) =


0 1

2θ22
0 0

1
2θ21θ2

1
2θ1θ22

0 0

0 − θ3
θ22

1
θ2

0

− θ4
θ21θ2

− θ4
θ1θ22

0 1
θ1θ2

 ,
respectively. The elements of observed information matrix j(θ)=[−lθiθj ]4×4,i, j = 1, 2, 3, 4
and the observed nuisance information matrix jλλ(θ) = [−lθiθj ]3×3, i, j = 2, 3, 4 are given by

lθ1θ1 =
n

2θ21
− t2
θ31θ2

+
2θ4t4
θ31θ2

− nθ24
θ31θ2

, lθ1θ2 = lθ2θ1 = − t2
2θ21θ

2
2

+
θ4t4
θ21θ

2
2

− nθ24
2θ21θ

2
2

, lθ1θ3 = lθ3θ1 = 0,

lθ1θ4 = lθ4θ1 = − t4
θ21θ2

+
nθ4
θ21θ2

, lθ2θ2 =
N

2θ22
− t1
θ32

+
2θ3t3
θ32
− mθ23

θ32
− t2
θ1θ32

+
2θ4t4
θ1θ32

− nθ24
θ1θ32

,

lθ2θ3 = lθ3θ2 = − t3
θ22

+
mθ3
θ22

, lθ2θ4 = lθ4θ2 = − t4
θ1θ22

+
nθ4
θ1θ22

, lθ3θ3 = −m
θ2
, lθ3θ4 = lθ4θ3 = 0,

and
lθ4θ4 = − n

θ1θ2
.

Since u(ψ) can be calculated from the above results, one can obtain r∗(ψ).
According to Barndorff-Neilsen (1986, 1991), r∗ is approximately distributed as a standard

normal distribution to the third order. Hence the p-value and confidence intervals based on
r∗ are highly accurate. The two-sided p-value for testing H0 : ψ = ψ0 is approximately
2{1− Φ(|r∗(ψ0)|)}. The 100(1− α)% confidence interval for ψ can be obtained from{

ψ : |r∗(ψ)| ≤ zα/2
}
. (2.8)

3. Simulation studies and example

Simulation studies were performed to investigate the performance of the proposed methods
for small sample sizes. The aim of simulation is to assess the coverage probabilities of the
confidence intervals based on r, r∗ and exact F statistic. Moreover, the probability of type
I error and powers of these three tests are also investigated.
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The estimated coverage probabilities of confidence intervals produced by r, r∗ and F are
given in Table 3.1. In Table 3.1, the sample size (m,n) is assumed to (3, 3), (5, 5), (5, 7),
(7, 5), (10, 10), (30, 20), (20, 30) and (40, 40). This design of sample sizes has intention to
know the performance of proposed statistics when the sample size is small or large. The value
of parameter of interest is assumed to θ1 = 0.25, 1, 4, 9. For each of possible combinations
of sample size and parameter values, 10,000 random samples from two independent normal
distributions were generated to calculate estimated coverage probabilities of 90% and 95%
confidence interval for θ1 with equal tail probabilities based on r, r∗ and F .

When the sample size is large (m,n) = (40, 40), given nominal levels 0.025, 0.05, 0.95 and
0.975, the estimated coverage probabilities of r, r∗ and F are close to nominal levels. But
when the sample size is small, the estimated coverage probabilities based on r do not achieve
nominal levels. This means r is inaccurate when the sample size is small. This phenomenon
is continued until the sample size reaches to (30, 30). In contrast, the coverage probabilities
of F and r∗ are close to nominal level even in small sample sizes such as (3, 3) or (5, 5). In
some cases, the coverage probabilities of r∗ is closer to nominal probabilities than that of
the exact F statistic. These results do not depend on the assumed values of θ1 or nuisance
parameters.

About the null hypothesis H0 : θ1 = 1, the probability of the type I error and the power
of the test based on F , r and r∗ are given in Table 3.2. In this table, the significance level
α = 0.05. When the value of parameter of interest differs from 1 or the sample size become
large, the power of the test increases constantly.

The power of r is the largest of them all. But the probability of the type I error of r when
the sample size is small is serious. Until the sample size increases from (3, 3) to (30, 20), the
probability of type I error of r is too big. Specially, when (m,n) = (3, 3), (5, 5), (5, 7), (7, 5),
the probability of type I error is almost two times of significance level.

But the behaviors of type I error and power based on F and r∗ are almost similar. The
probability of type I error of r∗, when the sample size (m,n) = (3, 3) or (5, 5), differs only
two decimal points below from given significance level. Conclusively, one can use r∗ instead
of F even in small sample size.

The real data example is a bioavailability study of parallel-group experiment of 20 subjects
to compare a new test formulation (m = 10) with a reference formulation (n = 10) of a drug
product. This data is called as Cmax data and was analyzed by Wu et al. (2002). They
assumed the distribution of the data as a lognormal distribution. The Cmax data is given
below.

New 732.89 1371.97 614.62 557.24 821.39 363.94 430.95 401.42 436.16 951.46
Reference 1053.63 1351.54 197.95 1204.72 447.20 3357.66 567.36 668.48 842.19 284.86

For the above data, the Shapiro-Wilk tests for the nomality on the log-transformed data
give a p-value of 0.595 for the ”New” group and a p-value of 0.983 for ”Reference” group.

The exact F test for equality of variances of the log-transformed data between two groups
results in acception of H0 : θ1 = 1 with a p-value of 0.068. The signed log-likelihood ratio
statistic for the equality of two variances is r = 1.943439 and the p-value is 0.052. So there is
no evidence for rejection of H0. The modified log-likelihood ratio statistic is r∗ = 1.716538
and the p-value is 0.086. So, the three tests give a same result for testing H0 : θ1 = 1.
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Table 3.1 The estimated coverage probabilities of F , r∗ and r

0.025 0.05 0.95 0.975
m n F r∗ r F r∗ r F r∗ r F r∗ r

µ1 = 1, µ2 = 2, σ1 = 1, σ2 = 1, θ1 = 1
3 3 .0235 .0286 .0717 .0478 .0529 .1138 .9523 .9459 .8872 .9754 .9726 .9279
5 5 .0237 .0232 .0461 .0468 .0484 .0804 .9532 .9511 .9210 .9782 .9749 .9542
5 7 .0220 .0231 .0318 .0464 .0476 .0577 .9513 .9505 .9067 .9767 .9763 .9446
7 5 .0269 .0258 .0556 .0494 .0509 .0951 .9517 .9516 .9417 .9757 .9732 .9664
10 10 .0240 .0255 .0350 .0464 .0506 .0640 .9495 .9534 .9377 .9748 .9758 .9671
30 20 .0237 .0256 .0346 .0482 .0497 .0628 .9505 .9519 .9539 .9746 .9764 .9768
20 30 .0253 .0259 .0258 .0498 .0489 .0477 .9509 .9500 .9349 .9740 .9745 .9664
40 40 .0237 .0266 .0287 .0461 .0500 .0546 .9500 .9539 .9514 .9734 .9763 .9735

µ1 = 1, µ2 = 2, σ1 = 1, σ2 = 2, θ1 = 4
3 3 .0266 .0271 .0718 .0507 .0520 .1110 .9535 .9432 .8861 .9766 .9691 .9236
5 5 .0248 .0261 .0489 .0505 .0511 .0808 .9504 .9480 .9139 .9753 .9739 .9502
5 7 .0269 .0272 .0354 .0515 .0502 .0604 .9487 .9445 .9015 .9726 .9708 .9400
7 5 .0222 .0295 .0588 .0498 .0538 .0977 .9491 .9511 .9395 .9717 .9781 .9690
10 10 .0235 .0232 .0317 .0459 .0463 .0597 .9541 .9540 .9409 .9771 .9764 .9668
30 20 .0244 .0243 .0338 .0482 .0499 .0632 .9505 .9521 .9537 .9758 .9756 .9761
20 30 .0246 .0253 .0247 .0497 .0497 .0484 .9501 .9499 .9370 .9747 .9753 .9665
40 40 .0247 .0237 .0256 .0505 .0504 .0538 .9497 .9495 .9457 .9764 .9753 .9729

µ1 = 1, µ2 = 2, σ1 = 1, σ2 = 3, θ1 = 9
3 3 .0284 .0271 .0701 .0532 .0518 .1078 .9545 .9419 .8782 .9764 .9682 .9214
5 5 .0260 .0258 .0498 .0526 .0530 .0841 .9493 .9463 .9153 .9755 .9724 .9484
5 7 .0234 .0236 .0315 .0472 .0471 .0556 .9519 .9493 .9078 .9761 .9753 .9444
7 5 .0246 .0260 .0544 .0517 .0501 .0933 .9525 .9486 .9390 .9767 .9756 .9665
10 10 .0273 .0236 .0341 .0542 .0481 .0627 .9524 .9457 .9320 .9767 .9724 .9611
30 20 .0258 .0253 .0342 .0531 .0498 .0654 .9502 .9471 .9498 .9748 .9742 .9742
20 30 .0246 .0249 .0245 .0492 .0499 .0484 .9501 .9507 .9356 .9751 .9753 .9674
40 40 .0262 .0228 .0245 .0474 .0463 .0495 .9537 .9526 .9503 .9772 .9738 .9722

µ1 = 1, µ2 = 2, σ1 = 2, σ2 = 1, θ1 = 0.25
3 3 .0273 .0290 .0730 .0540 .0522 .1146 .9529 .9407 .8860 .9754 .9685 .9215
5 5 .0270 .0275 .0498 .0535 .0534 .0863 .9486 .9441 .9139 .9739 .9719 .9473
5 7 .0267 .0230 .0313 .0512 .0474 .0559 .9513 .9455 .9021 .9764 .9710 .9387
7 5 .0241 .0299 .0609 .0496 .0554 .0993 .9481 .9509 .9388 .9735 .9761 .9682
10 10 .0238 .0250 .0354 .0487 .0494 .0629 .9509 .9509 .9363 .9752 .9757 .9650
30 20 .0237 .0230 .0320 .0495 .0470 .0605 .9536 .9507 .9523 .9771 .9764 .9769
20 30 .0232 .0259 .0256 .0463 .0513 .0499 .9484 .9534 .9368 .9739 .9767 .9701
40 40 .0232 .0233 .0252 .0473 .0477 .0504 .9524 .9527 .9496 .9768 .9768 .9747

Table 3.2 Type I error and the power of test when H0 : θ1 = 1

m n F r∗ r F r∗ r F r∗ r
θ1 = 1 θ1 = 0.5 θ1 = 2

3 3 .0497 .0574 .1482 .0603 .0698 .1776 .0656 .0756 .1785
5 5 .0539 .0569 .1033 .0896 .0937 .1615 .0879 .0906 .1523
5 7 .0487 .0515 .0965 .0869 .0932 .1750 .1094 .1087 .1464
7 5 .0495 .0520 .0926 .1045 .1040 .1402 .0821 .0874 .1723
10 10 .0512 .0517 .0722 .1642 .1658 .2076 .1561 .1570 .2021
30 20 .0487 .0487 .0563 .3783 .3776 .3749 .3401 .3413 .3961
20 30 .0497 .0502 .0583 .3412 .3424 .3952 .3848 .3841 .3805
40 40 .0495 .0496 .0534 .5650 .5650 .5807 .5698 .5701 .5840

θ1 = 5 θ1 = 7 θ1 = 9
3 3 .1171 .1313 .3011 .1565 .1779 .3755 .1891 .2148 .4352
5 5 .2705 .2789 .4053 .3928 .4025 .5390 .4709 .4811 .6178
5 7 .3809 .3788 .4336 .5210 .5189 .5703 .6251 .6232 .6724
7 5 .2875 .3031 .4757 .4133 .4289 .6132 .5086 .5283 .7068
10 10 .6243 .6262 .6889 .7924 .7936 .8363 .8752 .8762 .9071
30 20 .9634 .9638 .9737 .9948 .9949 .9966 .9990 .9990 .9993
20 30 .9639 .9639 .9633 .9936 .9936 .9934 .9988 .9988 .9988
40 40 .9987 .9987 .9988 .9999 .9999 .9999 1.0000 1.0000 1.0000
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4. Conclusions

Two small sample likelihood based inference methods for testing equality of two inde-
pendent normal variances are proposed. When the parameter of interest is the ratio of two
variances, the signed log-likelihood ratio statistic, r, and the modified signed log-likelihood
ratio statistic, r∗, are developed.

The estimated coverage probabilities of conficence intervals, type I error and power of
testing H0 : θ1 = 1 based on r, r∗ and F statistic are obtained. Simulation results show
that the modified signed log-likelihood ratio statistic gives exact coverage probability and is
almost an exact test even for small sample. As a real data example, Cmax data is analyzed
using the proposed test statistics.

Conclusively, the modified signed log-likelihood ratio statistic is comparable to the F
statistic. This fact suggests that normal approximation like r∗ is a good alternative instead
of using F . Using quantile of standard normal distribution, one can perform the test of
equality of two normal variances without resorting F test.
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