• Title/Summary/Keyword: Data Fabrication

Search Result 693, Processing Time 0.029 seconds

Development of an Embedded Solar Tracker using LabVIEW (LabVIEW 적용 임베디드 태양추적장치 개발)

  • Oh, Seung-Jin;Lee, Yoon-Joon;Kim, Nam-Jin;Oh, Won-Jong;Chun, Won-Gee
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.128-135
    • /
    • 2010
  • This paper introduces step by step procedures for the fabrication and operation of an embedded solar tracker. The system presented consists of application software, compactRIO, C-series interface module, analogue input module, step drive, step motor, feedback devices and other accessories to support its functional stability. CompactRIO that has a real-tim processor allows the solar tracker to be a stand-alone real time system which operates automatically without any external control. An astronomical method and an optical method were used for a high-precision solar tracker. CdS sensors are used to constantly generate feedback signals to the controller, which allow a solar tracker to track the sun even under adverse conditions. The database of solar position and sunrise and sunset time was compared with those of those of the Astronomical Applications Department of the U.S. Naval Observatory. The results presented here clearly demonstrate the high-accuracy of the present system in solar tracking, which are applicable to many existing solar systems.

Polyethersulfone (PES) ultrafiltration (UF) membranes loaded with silver nitrate for bacteria removal

  • Basri, H.;Ismail, A.F.;Aziz, M.
    • Membrane and Water Treatment
    • /
    • v.2 no.1
    • /
    • pp.25-37
    • /
    • 2011
  • PES UF membranes containing silver were prepared to impart antibacterial properties for waste water treatment. Asymmetric membranes for antibacterial application were prepared from polyethersulfone (PES) and silver nitrate ($AgNO_3$) (PES/$AgNO_3$=15/2 by weight) solution in N-Methyl-2-pyrrolidone (NMP) via simple wet phase inversion technique. These membranes were characterized by polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) of different molecular weights (1000 ppm in water) at room temperature and on operating pressure of 5 bars. It was observed that the water flux of PES-$AgNO_3$ membrane is slightly lower than virgin PES but still increased linearly with the increment of pressure applied. The morphology of the resulting membranes was examined using Field-Emission Scanning Electron Microscope (FESEM) coupled with Energy Dispersive Spectroscopy (EDS). Elemental analysis using EDS proved that silver is successfully loaded on the membrane surfaces. Due to the success of loading silver on membrane surfaces, antibacterial activities were evaluated via agar diffusion method against Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus) culture. By incorporating 2 wt% of silver nitrate, PES-$AgNO_3$ showed significant inhibition ring on both E.coli and S.aureus. Filtration of E.coli solution (OD 0.31) showed satisfactory rejection data with ~100% inhibition growth after 24 hours incubation at $37^{\circ}C$. Resultant membranes also exhibit better tensile strength (compared to virgin PES) up to 71% may be due to the suggested interactions. The residual silver during fabrication was measured using ICP-MS and result showed that the residual silver content of PES-$AgNO_3$ membrane was only ~1% of the original silver added in the polymer solution. These studies have shown that PES-$AgNO_3$ UF membranes are potential in improving the filtration in water treatment.

An ECG monitoring system using a conductive thread-based wearable antenna (전도성 섬유 웨어러블 안테나를 기반으로 한 심전도 모니터링 시스템 설계)

  • Chung, Jae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.10-15
    • /
    • 2017
  • Research interest has strongly focused on developing a method for effectively transmitting bio-signals over a distance using a wireless wearable device. In this paper, we describe a procedure for the design and fabrication of a wearable antenna based on embroidering conductive threads to clothing capable of transmitting electrocardiogram signals. 3D electromagnetic simulation software and embroidery software were used to design and fabricate the conductive thread-based antenna, respectively. The measurement results show that the reflection coefficient of the fabricated antenna prototype exhibits excellent antenna impedance matching characteristics of less than -10dB in the Zigbee 2.4GHz frequency band. We also verified that the electrocardiogram data could be effectively received and monitored in real-time by a receiver 220m away from the transmitter.

Fabrication and Characterization of BCP Nano Particle Loaded PCL Fiber and Their Biocompatibility

  • Nguyen, Thi-Phuong;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.392-400
    • /
    • 2010
  • The electrospinning process was established as a promising method to fabricate nano and micro-textured scaffolds for tissue engineering applications. A BCP-loaded PCL micro-textured scaffold thus can be a viable option. The biocompatibility as well as the mechanical properties of such scaffold materials should be optimized for this purpose. In this study, a composite scaffold of poly ($\varepsilon$-caprolactone) (PCL)-biphase calcium phosphate (BCP) was successfully fabricated by electrospinning. EDS and XRD data show successful loading of BCP nano particles in the PCL fibers. Morphological characterization of fibers shows that with a higher loaded BCP content the fiber surface was rougher and the diameter was approximately 1 to 7 ${\mu}m$. Tensile modulus and ultimate tensile stress reached their highest values in the PCL- 10 wt% BCP composite. When content of nano ceramic particles was low, they were dispersed in the fibers as reinforcements for the polymer matrix. However, at a high content of ceramic particles, the particles tend to agglomerate and lead to decreasing tensile modulus and ultimate stress of the PCL-BCP composite mats. Therefore, the use of nano BCP content for distribution in fiber polymer using BCP for reinforcement is limited. Tensile strain decreased with increasing content of BCP loading. From in vitro study using MG-63 osteoblast cells and L-929 fibroblast like cells, it was confirmed that electrospun PCL-BCP composite mats were biocompatible and that spreading behavior was good. As BCP content increased, the area of cell spreading on the surface of the mats also increased. Cells showed the best adherence on the surface of composite mats at 50 wt% BCP for both L-929 fibroblast-like cells and MG-63 osteoblast cell. PCL- BCP composites are a promising material for application in bone scaffolds.

Fabrication of 3D Micro Structure by Dual Diffuser Lithography (듀얼 디퓨저 리소그래피를 이용한 3 차원 마이크로 구조의 제작)

  • Han, Dong-Ho;Hafeez, Hassan;Ryu, Heon-Yul;Cho, Si-Hyeong;Park, Jin-Goo
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.447-452
    • /
    • 2013
  • Recently, products that a have 3-dimensional(3D) micro structure have been in wide use. To fabricate these 3D micro structures, several methods, such as stereo lithography, reflow process, and diffuser lithography, have been used. However, these methods are either very complicated, have limitations in terms of patterns dimensions or need expensive components. To overcome these limitations, we fabricated various 3D micro structures in one step using a pair of diffusers that diffract the incident beam of UV light at wide angles. In the experiment, we used positive photoresist to coat the Si substrate. A pair of diffusers(ground glass diffuser, opal glass diffuser) with Gaussian and Lambertian scattering was placed above the photomask in the passage of UV light in the photolithography equipment. The incident rays of UV light diffracted twice at wider angles while passing through the diffusers. After exposure, the photoresist was developed fabricating the desired 3D micro structure. These micro structures were analyzed using FE-SEM and 3D-profiler data. As a result, this dual diffuser lithography(DDL) technique enabled us to fabricate various microstructures with different dimensions by just changing the combination of diffusers, making this technology an efficient alternative to other complex techniques.

Nondestructive, Quantitative Synchrotron Grazing Incidence X-ray Scattering Analysis of Cylindrical Nanostructure in Supported Thin Films

  • Yoon, Jin-Hwan;Yang, Seung-Yun;Lee, Byeong-Du;Joo, Won-Chul;Heo, Kyu-Young;Kim, Jin-Kon;Ree, Moon-Hor
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.300-300
    • /
    • 2006
  • Nondestructive nanostructural analysis is indispensable in the development of nano-materials and nano-fabrication processes for use in nanotechnology applications. In this paper, we demonstrate for the first time a quantitative, nondestructive analysis of nanostructured thin films supported on substrates and their templated nanopores by using grazing incidence X-ray scattering and data analysis with a derived scattering theory. Our analysis disclosed that vertically oriented nanodomain cylinders had formed in 20-100 nm thick films supported on substrates consisting of a mixture of poly(styrene-b-methyl methacrylate) (PS-b-PMMA) and PMMA homopolymer, and that the PMMA nanodomains were selectively etched out by ultraviolet light exposure and a subsequent rinse with acetic acid, resulting in a structure consisting of hexagonally packed cylindrical nanopores.

  • PDF

Fabrication of deflector integrated laser diodes and light deflection (광 편향기 집적 레이저 다이오드의 제작 및 광의 편향)

  • 김강호;권오기;김종회;김현수;심은덕;오광룡;김석원
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.2
    • /
    • pp.171-176
    • /
    • 2004
  • A light deflector integrated laser diode(LD) was fabricated and the characteristics of LD and ourput beam deflection as a function of deflector injection current were measured. To integrate the deflector with LD, a passive waveguide was integrated with the LD and a triangular-type light deflector was fabricated on the upper clad of the passive waveguide section. Light deflection from the fabricated light deflector is controlled by the effective refractive index variation induced by carrier injection. To characterize the effect of the deflector injection current, threshold current, slope efficiency, and output beam spectrum were measured as a function of deflector injection current. From these measured data, the increment in the threshold current and the decrement of the slope efficiency were observed. However, the output beam spectrum was not affected by the deflector. The Beam Propagation Method(BPM) was used to simulate the proposed device and the light deflection was measured by the far-field pattern of the output beam as a function of the deflector injection current. In the fabricated deflector integrated LD, the deflection angle of 1.9$^{\circ}$ at the injection current of 15 ㎃ was obtained.

Point-diffraction interferometer for 3-D profile measurement of light scattering rough surfaces (광산란 거친표면의 고정밀 삼차원 형상 측정을 위한 점회절 간섭계)

  • 김병창;이호재;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.5
    • /
    • pp.504-508
    • /
    • 2003
  • We present a new point-diffraction interferometer, which has been devised for the three-dimensional profile measurement of light scattering rough surfaces. The interferometer system has multiple sources of two-point-diffraction and a CCD camera composed of an array of two-dimensional photodetectors. Each diffraction source is an independent two-point-diffraction interferometer made of a pair of single-mode optical fibers, which are housed in a ceramic ferrule to emit two spherical wave fronts by means of diffraction at their free ends. The two spherical wave fronts then interfere with each other and subsequently generate a unique fringe pattern on the test surface. A He-Ne source provides coherent light to the two fibers through a 2${\times}$l optical coupler, and one of the fibers is elongated by use of a piezoelectric tube to produce phase shifting. The xyz coordinates of the target surface are determined by fitting the measured phase data into a global model of multilateration. Measurement has been performed for the warpage inspection of chip scale packages (CSPs) that are tape-mounted on ball grid arrays (BGAs) and backside profile of a silicon wafer in the middle of integrated-circuit fabrication process. When a diagonal profile is measured across the wafer, the maximum discrepancy turns out to be 5.6 ${\mu}{\textrm}{m}$ with a standard deviation of 1.5 ${\mu}{\textrm}{m}$.

A study on the core technologies for industrial type digital 3D SFF system

  • Kim, Dong-Soo;An, Young-Jin;Kim, Sung-Jon;Choi, Byung-Oh;Lim, Hyun-Eui
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2170-2174
    • /
    • 2005
  • Selective Laser Sintering (SLS) is a useful rapid prototyping technique for the manufacture of three dimensional (3D) solid objects directly from a scanning data. A new approach called a Selective Multi-Laser Sintering (SMLS) system has been developed at Korea Institute Machinery & Materials (KIMM) as an industrial type SFFS. This SMLS machine is built with a frame, heaters, nitrogen supply part, laser system. This system uses the dual laser and 3D scanner made in $Solutionix^{TM}$ to improve the precision and speed for large objects. The three-dimensional solid objects are made of polyamide powder. The investigation on each part of SMLS system is performed to determine the proper theirs design and the effect of experimental parameters on making the 3D objects. The temperature of the system has a great influence on sintering the polymer. Because the stability of the powder temperature prevents the deformation of each layer, the controls of the temperature in both the system and the powders are very important during the process. Therefore, we simulated the temperature distribution of build room using the temperature analysis with ANSYS program. Selected radiant heater is used to raise temperature of powder to melting point temperature. The laser parameters such as scan spacing, scan speed, laser power and laser delay time affect the production the 3D objects too. The combination of the slow scan speed and the high laser power shows the good results without the layer curling. The work is under way to evaluate the effect of experimental parameters on process and to produce the various objects. We are going to experiment continuously to improve the size accuracy and surface roughness.

  • PDF

Microscopy Study for the Batch Fabrication of Silicon Diaphragms (실리콘 Diaphragm의 일괄 제조공정을 위한 Microscopy Study)

  • 하병주;주병권;차균현;오명환;김철주
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.1
    • /
    • pp.33-40
    • /
    • 1992
  • Several etching phenomena were observed and analyzed in diaphragm process performed on 4-inch (100) Si wafers for sensor application. In case of deep etching to above 300$\mu$m depth, the etch-defects appeared at etched surface could be classified into three categories such as hillocks, reaction products, and white residues. It was known that the hillock had a pyramidal shape or trapizoidal hexahedron structure depending on the density and size of the reaction products. The IR spectra showed that the white residue, which was due to the local over-saturation of Si dissolved in solution, was mostly Si-N-O compounds mixed with a small amount of H and C etc. Also, the difference in both the existence of etch-defects and etch rate distribution over a whole wafer was investigated when the etched surfaces were downward, upward horizontally and erective in etching solutions. The obtained data were analyzed through flow pattern in the etching bath. As the results, the downward and erective postures were favorable in the etch rate uniformity and the etch-defect removal, respectively.

  • PDF