Browse > Article
http://dx.doi.org/10.3740/MRSK.2010.20.7.392

Fabrication and Characterization of BCP Nano Particle Loaded PCL Fiber and Their Biocompatibility  

Nguyen, Thi-Phuong (Department of Biomedical Engineering and Materials,School of Medicine, Soonchunhyang University)
Lee, Byong-Taek (Department of Biomedical Engineering and Materials,School of Medicine, Soonchunhyang University)
Publication Information
Korean Journal of Materials Research / v.20, no.7, 2010 , pp. 392-400 More about this Journal
Abstract
The electrospinning process was established as a promising method to fabricate nano and micro-textured scaffolds for tissue engineering applications. A BCP-loaded PCL micro-textured scaffold thus can be a viable option. The biocompatibility as well as the mechanical properties of such scaffold materials should be optimized for this purpose. In this study, a composite scaffold of poly ($\varepsilon$-caprolactone) (PCL)-biphase calcium phosphate (BCP) was successfully fabricated by electrospinning. EDS and XRD data show successful loading of BCP nano particles in the PCL fibers. Morphological characterization of fibers shows that with a higher loaded BCP content the fiber surface was rougher and the diameter was approximately 1 to 7 ${\mu}m$. Tensile modulus and ultimate tensile stress reached their highest values in the PCL- 10 wt% BCP composite. When content of nano ceramic particles was low, they were dispersed in the fibers as reinforcements for the polymer matrix. However, at a high content of ceramic particles, the particles tend to agglomerate and lead to decreasing tensile modulus and ultimate stress of the PCL-BCP composite mats. Therefore, the use of nano BCP content for distribution in fiber polymer using BCP for reinforcement is limited. Tensile strain decreased with increasing content of BCP loading. From in vitro study using MG-63 osteoblast cells and L-929 fibroblast like cells, it was confirmed that electrospun PCL-BCP composite mats were biocompatible and that spreading behavior was good. As BCP content increased, the area of cell spreading on the surface of the mats also increased. Cells showed the best adherence on the surface of composite mats at 50 wt% BCP for both L-929 fibroblast-like cells and MG-63 osteoblast cell. PCL- BCP composites are a promising material for application in bone scaffolds.
Keywords
electrospinning; composite; polycaprolactone; biphase calcium phosphate; MG-63 osteoblast cell;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 A. D. Santos, M. Farina, G. A. Soares and K. Anselme, J. Mater. Sci. Mater. Med., 19(6), 2307 (2008).   DOI   ScienceOn
2 J. Venugopal, S. Mitra, V. R. G. Dev and S. Ramakrishna, Biomaterials, 30(11), 2085 (2009).   DOI   ScienceOn
3 M. Ngiama, S. Liaob. A. J. Patilc, Z. Chengb, C. K. Chanb and S. Ramakrishnab, Bone, 45(1), 4 (2009).   DOI   ScienceOn
4 L. Ambrosio, L. Savarino, D. Granchi, E. Cenni, N. Baldini, S. Pagani, S. Guizzardi, F. Causa and A. Giunti, Biomaterials, 24(21), 3815 (2003).   DOI   ScienceOn
5 T. Matsuura, R. Hosokawa, K. Okamoto, T. Kimoto and Y. Akagawa, Biomaterials, 21(11), 1121 (2000).   DOI   ScienceOn
6 S. Osawa, M. Yabe, M. Miyamura and K. Mizuno, Polymer, 47(11), 3711 (2006).   DOI   ScienceOn
7 Z. Hong, P. Zhang, C. He, X. Qiu, A. Liu, L. Chen, X. Chen, and X. Jing, Biomaterials, 26(32), 6296 (2005).   DOI   ScienceOn
8 K. Anselme, Biomaterials, 21(7), 667 (2000).   DOI   ScienceOn
9 G. Wei and P. X. Ma, Biomaterials, 25(19), 4749 (2004).   DOI   ScienceOn
10 L. D. Silvio, M. J. Dalby and W. Bonfield, Biomaterials, 23(1), 101 (2002).   DOI   ScienceOn
11 T Vinoy, J Sunita, J. Kalonda, J. Moncy, Y. K Vohra, J. Nanosci. Nanotechnol., 6(2), 487 (2006).   DOI   ScienceOn
12 P. Wutticharoenmongkol, N. Sanchavanakit, P. Pavasant and P. Supaphol, Macromol. Biosci., 6, 70 (2006).   DOI   ScienceOn
13 J. R. Venugopal, S. Low, A. T. Choon, A. B. Kumar and S. Ramakrishna, Artif. Organs, 32(5), 388 (2008).   DOI   ScienceOn
14 E. D. Federico, I. Moscatelli, A. Camaioni, I. Armentano, L. Campagnolo, M. Dottori, J. M. Kenny, G. Siracusa and G. Gusmano, Mater. Sci. Eng.: C, 29(6), 2063 (2009).   DOI   ScienceOn
15 T. Lee, M. H. Youn, R. K. Paul, K. H . Lee and H. Y. Song, Mater. Chem. Phys., 104(2), 249 (2007).   DOI   ScienceOn
16 E. A. D. Santos, M. Farina, G. A. Soares and K. Anselme, J. Biomed. Mater. Res., 89A, 510 (2009).   DOI   ScienceOn
17 T. P. Sastry and R. V. S. Kumar, J. Biomater. Appl., 19, 341 (2005).   DOI   ScienceOn
18 T. J. Sill and H. A. Recum, Biomaterials, 29, 1989 (2008).   DOI   ScienceOn
19 G. Mickisch, S. Fajta, G. Keilhauer, E. Schlick, R. Tschada and P. Alken, Urol. Res., 18(2), 131 (1990).   DOI
20 W. J. Li, R. L. Mauck and R. S. Tuan, J. Biomed. Nanotechnol., 1(3), 259 (2005).   DOI
21 V. Comte, C. Lagneau, P. Exbrayat, M. Lissac, N. J. Renault and L. Ponsonnet, Mater. Sci. Eng.: C, 25(1), 51 (2005).   DOI   ScienceOn
22 T. Matsuura, R. Hosokawa, K. Okamoto, T. Kimoto, Y. Akagawa, Biomaterials, 21(11), 1121 (2000).   DOI   ScienceOn
23 M. Shin , H. Yoshimoto and J. P Vacanti, Tissue Eng., 10(1), 33 (2004).   DOI   ScienceOn
24 J. Y. Lim, M. C. Shaughnessy, Z. Zhou, H. Noh, E. A. Vogler and H. J. Donahue, Biomaterials, 29(12), 1776(2008).   DOI   ScienceOn
25 J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian, L. Yang and X. Jing, J. Contr. Release., 92(3), 227 (2003).   DOI   ScienceOn
26 T. B. Bini, S. Gao, X. Xu, S. Wang, S. Ramakrishna and K. W. Leong, J. Biomed. Mater. Res. A, 68(2), 286 (2004).
27 H. Yoshimoto, Y. M. Shin, H. Terai and J. P. Vacanti, Biomaterials, 24(12), 2077 (2003).   DOI   ScienceOn
28 M. Shin, O. Ishii, T. Sueda and J. P. Vacanti, Biomaterials, 25(17), 3717 (2004).   DOI   ScienceOn
29 W. J. Li, R. Tuli, X. Huang, P. Laquerriere and R. S. Tuana, Biomaterials, 26(25), 5158 (2005).   DOI   ScienceOn
30 C. D. Gaudio, A. Bianco, M. Folin, S. Baiguera and M. Grigioni, J. Biomed. Mater. Res., 89A(4), 1028 (2008).   DOI   ScienceOn
31 K. A. Gross, L. M. Luis and M. R. Lorenzo, Biomaterials, 25(20), 4955 (2004).   DOI   ScienceOn