• Title/Summary/Keyword: Data Density

Search Result 5,379, Processing Time 0.029 seconds

A new type of saturated vapor density correlation for refrigerants (냉매에 대한 새로운 유형의 포화증기밀도 상관식)

  • 박경근
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.550-557
    • /
    • 1998
  • The saturated vapor density correlation proposed here relates logarithmic density to the inverse of temperature. Its performance is examined correlating the date listed in the ASHTAE tables for 40 refrigerants. The correlation equation is valid over the entire range where data point exist and gives better results than a conventional equation with the same number of adjustable coefficients. Number of terms in the equation is a variable so that great flexibility can be given to the representation of data.

  • PDF

Jackknife Kernel Density Estimation Using Uniform Kernel Function in the Presence of k's Unidentified Outliers

  • Woo, Jung-Soo;Lee, Jang-Choon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.6 no.1
    • /
    • pp.85-96
    • /
    • 1995
  • The purpose of this paper is to propose the kernel density estimator and the jackknife kernel density estimator in the presence of k's unidentified outliers, and to compare the small sample performances of the proposed estimators in a sense of mean integrated square error(MISE).

  • PDF

Analysis of Factors Influencing Street Vitality in High-Density Residential Areas Based on Multi-source Data: A Case Study of Shanghai

  • Yuan, Meilun;Chen, Yong
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Currently, big data and open data, together with traditional measured data, have come to constitute a new data environment, expanding new technical paths for quantitative analysis of the street environment. Streets provide precious linear public space in high-density residential areas. Pedestrian activities are the main body of street vitality. In this paper, 441 street segments were selected from 21 residential districts in high-density downtown area of Shanghai as cases, to quantitatively evaluate the influencing factors of pedestrian activities. Bivariate analysis was performed, and the results showed that street vitality was not only correlated with a highly populated environment, but also with other factors. In particular, the density of entrances and exits of residential properties, the proportion of walkable areas, and the density of retail and service facilities, were correlated with the vitality of street segments. The magnitudes of correlation between the street environmental factors and the pedestrian traffic differed across various trip purposes. Segment connectivity factors were more correlated with walking for leisure than for transportation. While public transportation factors were mainly correlated with walking for transportation, vehicular traffic factors were negatively correlated with walking for leisure.

A Comparison on the Differential Entropy

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.3
    • /
    • pp.705-712
    • /
    • 2005
  • Entropy is the basic concept of information theory. It is well defined for random varibles with known probability density function(pdf). For given data with unknown pdf, entropy should be estimated. Usually, estimation of entropy is based on the approximations. In this paper, we consider a kernel based approximation and compare it to the cumulant approximation method for several distributions. Monte carlo simulation for various sample size is conducted.

  • PDF

Influence on PET Exam Caused by Density Differences of Barium-sulfate Contrast Media (Barium 조영제의 농도 차이가 PET 검사에 미치는 영향)

  • Choi, Woo-Joon;Shin, Sang-Ki;Nam, Ki-Pyo;Park, Soon-Ki
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.1
    • /
    • pp.27-32
    • /
    • 2008
  • Purpose: The evaluation of SUV (Standardized Uptake Values) for quantitative analysis in PET exam is the most significant. In PET exam, we make attenuation correction images by using $^{68}Ge$, $^{137}Cs$ or CT data. At this time, a distorted attenuation map affects quantitative analysis. After the exam using barium-sulfate and high density of barium contrast make attenuation map distorted. And then it brings bed influences on SUV. The aim of this study is to verify the relationship between high density barium-sulfate and SUV in PET exam. Materials and Methods By using $^{18}F$-FDG, we made barium-sulfate powder, density of 0, 1.5, 3, 5, 10 and 15% respectively and acquired PET and PET/CT images per each density. And we examined SUV variations from PET and PET/CT images according to differences of barium's density. Moreover, we finally calculated SUV causing variations in HU (Hounsfield Units) values to justify whether the differences of barium density bring any changes in PET/CT exam. Results: From PET images acquired from transmission scan with $^{68}Ge$, we got SUV figures from 6.46 to 6.8 in barium density between 0 to 15 percent. On the other hand, In PET images acquired from Tx scan that using CT, SUV was 6.77 to 23.73, derived from the same barium density. And CT HU values range from 29 to 2004. Conclusion: PET images from Tx data using $^{68}Ge$ weren't affected by barium density and had no differences in SUV. But in the PET/CT images using CT Tx data, there's considerable variations in HU and SUV values according to a difference of barium density in HU values. To perform a precise examination, barium sulfate should be removed from a human body before performing a PET exam.

  • PDF

Modified Local Density Estimation for the Log-Linear Density

  • Pak, Ro-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.1
    • /
    • pp.13-22
    • /
    • 2000
  • We consider local likelihood method with a smoothed version of the model density in stead of an original model density. For simplicity a model is assumed as the log-linear density then we were able to show that the proposed local density estimator is less affected by changes among observations but its bias increases little bit more than that of the currently used local density estimator. Hence if we use the existing method and the proposed method in a proper way we would derive the local density estimator fitting the data in a better way.

  • PDF

A Study on Density-Based Clustering Method Considering Directionality (방향성을 고려한 밀도 기반 클러스터링 기법에 관한 연구)

  • Jinman Kim;Joongjin Kook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.38-44
    • /
    • 2024
  • This research proposed DBSCAN-D, which is a clustering technique for locating POI based on existing density-based clustering research, such as GPS data, generated by moving objects. This method is designed based on 'staying time' and 'directionality' extracted from the relationship between GPS data. The staying time can be extracted through the difference in the reception time between data using the time at which the GPS data is received. Directionality can be expressed by moving the area of data generated later in the direction of the position of the previously generated data by concentrating on the point where the GPS data is sequentially generated. Through these two properties, it is possible to perform clustering suitable for the data set generated by the moving object.

  • PDF

An Estimation Methodology of Empirical Flow-density Diagram Using Vision Sensor-based Probe Vehicles' Time Headway Data (개별 차량의 비전 센서 기반 차두 시간 데이터를 활용한 경험적 교통류 모형 추정 방법론)

  • Kim, Dong Min;Shim, Jisup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.2
    • /
    • pp.17-32
    • /
    • 2022
  • This study explored an approach to estimate a flow-density diagram(FD) on a link in highway traffic environment by utilizing probe vehicles' time headway records. To study empirical flow-density diagram(EFD), the probe vehicles with vision sensors were recruited for collecting driving records for nine months and the vision sensor data pre-processing and GIS-based map matching were implemented. Then, we examined the new EFDs to evaluate validity with reference diagrams which is derived from loop detection traffic data. The probability distributions of time headway and distance headway as well as standard deviation of flow and density were utilized in examination. As a result, it turned out that the main factors for estimation errors are the limited number of probe vehicles and bias of flow status. We finally suggest a method to improve the accuracy of EFD model.

Optimal Designs for Multivariate Nonparametric Kernel Regression with Binary Data

  • Park, Dong-Ryeon
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.243-248
    • /
    • 1995
  • The problem of optimal design for a nonparametric regression with binary data is considered. The aim of the statistical analysis is the estimation of a quantal response surface in two dimensions. Bias, variance and IMSE of kernel estimates are derived. The optimal design density with respect to asymptotic IMSE is constructed.

  • PDF

Joint probability density function of droplet sizes and velocities in a transient diesel spray (간헐디젤분무의 액적크기 및 속도의 공동확률밀도함수)

  • Kim, Jong-Hyeon;Gu, Ja-Ye;O, Du-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.5
    • /
    • pp.607-617
    • /
    • 1998
  • Comparisons of joint probability density distribution obtained from the raw data of measured droplet sizes and velocities in a transient diesel fuel spray with computed joint probability density function were made. Simultaneous droplet sizes and velocities were obtained using PDPA. Mathematical probability density functions which can fit the experimental distributions were extracted using the principle of maximum likelihood. Through the statistical process of functions, mean droplet diameters, non-dimensional mass, momentum and kinetic energy were estimated and compared with the experimental ones. A joint log-hyperbolic density function presents quite well the experimental joint density distribution which were extracted from experimental data.