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A Comparison on the Differential Entropy

Daehak Kim?l)

Abstract

Entropy is the basic concept of information theory. It is well defined for
random varibles with known probability density function(pdf). For given
data with unknown pdf, entropy should be estimated. Usually, estimation
of entropy is based on the approximations. In this paper, we consider a
kernel based approximation and compare it to the cumulant approximation
method for several distributions. Monte carlo simulation for various
sample size is conducted.

Keywords : cumulant, density expansion, differential entropy, Entropy,
kernel density

1. Introduction

Entropy is the basic concept of information theory. Entropy of random variable
can be interpreted as an amount of randomness. Hyvarinen(2001) studied the
connection between entropy and randomness by considering coding length.
Entropy H (X) is defined for a discrete random variable X as

H(X)=— Y P(X=gq;) - logP(X = a,) (LD

where a;s are the possible values of X. Depending on what the base of the

logarithm is, different units of entropy are obtained. Usually, the logarithm with
base e is used. Now let us define the function g as

g(p) =—plogp, for0 <p <1, (1.2)
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This is a nonnegative function that is 0 for » =0 and for p =1, and positive
for vlaues in between. Using this function, entropy can be written as

H(X) =Y 9(P(X=a)). (1.3)

Considering the shape of g, we see that the entropy is small if the probabilities
P(X = a;) are close to 0 or 1, and large if the probabilities are in between 0

and 1. The definition of entropy for a discrete random variable can be generalized
for continuous random variables and vectors, in which case it is often called
differential entropy.

The differential entropy of a random variable X with probability density
function fy( -+ ) is defined as

H(X) == [ fs(t)logfy(t)dt= [ g(fe(t))at (14)

and will be abbreviated H. For the details about entropy, see Cover(1991) and
Papoulis(1991).

However, when we don't know the true pdf, estimation of entropy H is
required from the data itself. For the given sample X, X, ---, X,, with unknown

population, the approximations of entropy H can be considered.

In this paper, we investigate several approximation methods of entropy H and
consider the application of kernel density estimates to the approximation of H. A
comparisons on the estimates of differential entropy H is made via Monte Carlo
simulation study.

2. Approximation of Entropy

In the previous section, we saw that entropy is a function of pdf. Entropy can
be considered as a regularization measure that help us find the least structured
density compatible with the measurements. In other words, the maximum entropy
density can be interpreted as the density that is compatible with the
measurements and makes the minimum number of assumptions on the data. This
1S because entropy can be interpreted as a measure of randomness and therefore
the maximum entropy density is the most random of all the pdf's that satisfy the
constraints.

The problem in wusing the entropy estimate 1is, however, that it 1is
computationally very difficult. To use differential entropy in practice, we could
compute the integral in the definition in (1.4). This is, however, quite difficult
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since the integral involves the unknown probability density function. The density
could be estimated for the evaluation of entropy. In practice, some approximations,
possibly rather coarse, have to be used. In this section, we discuss about the
approximations of entropy.

2.1 Approximation by kernel density

We can use the basic kernel density estimator

fo) = 23 k(IS

i=1

(2.1)

to the approximation of differential entropy H . Silverman(1995) introduced a good
guide for kernel estimation of probability density estimation. Such a simple
approach would be very ideal. But it should be used cautiously because the kernel
density estimator would depend on the choice of the kernel parameters called
bandwidth. Bowman(1984) considered the cross-validation method. It is the most
popular method for the choice of data dependent bandwidth. Cross—validatory
choice select the bandwidth 2 by minimizing

My (h) = / - %Zf*L(Xl) (2.2)
where

, — X

foile) = (n_ll)h;iK(gE R (2.3)

Optimal bandwidth choice for given data is also available for certain cases. For
example, in integrated mean squared error sense with normal kernel, we can get
an optimal kernel by

oy = 1.060m /7 (2.4)

Then, the entropy estimates based on kernel density estimator (2.1) can be
He=— / F(a)logf (z) da (25)
The behaviour of this estimates is examined in section 3.

2.2 Approximation by polynomial density expansions

The classical method of approximating entropy is using higher—order cumulants.
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These are based on the idea of using an expansion. This expansion is taken for
the pdf of a random variable, say X, in the vicinity of the gaussian density. For
simplicity, let us first make X zero-mean and of unit variance. Then, we can
make the technical assumption that the density px({) of X is near the

standardized gaussian density

Q&) = exp(—&/2)/\/2m (2.6)

Two expansions are usually used in this context: the Gram-Charlier expansion
and the FEdgeworth expansion. They lead to very similar approximations.
Gram-Charlier expansion use the so-called Chebyshev-Hermite polynomials,
denoted by H, where the index ¢ is a nonnegative integer. These polynomials are

defined by the derivatives of the standardized gaussian pdf ¢ (§) by the equation

Zele) - (—1ym©e () 27

Thus, H; is a polynomial of order i. The Gram-Charlier expansion of the pdf

of X, truncated to include the two first non constant terms, is then given by

pa(€) =~ 5r(&) = p (O + ry ()L L ) BlEL ) o

where k3(X) = E{X3} is the third order cumulant and r,(X)= E{X?*} —3.
Note that the expansion starts directly from higher-order cumulants due to the
standardization of X to zero mean and unit variance. Now we could plug the
density in (2.8) into the definition of entropy, to obtain

H(X) ~= [ p.(€)logp,(§)dg (29)

This integral is not very simple to evaluate, though. But again using the idea
that the pdf is very close to a gaussian one, we see that the cumulants in (2.8)
are very small, and thus we can use the simple approximation

log(l+¢€) =e—€/2 (2.10)
which gives
2(X X
H(X) ~— [ o(&)loge (¢)ae — XL M) (211)

Thus we finally obtain an approximation of the entropy of a standardized
random variable as
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H(X) == [ o(©)logp(€)dé 5 BIX* P+ ookut? (X)) 212)

where kurt(X) = E(X*)—3. For the given sample, we can get the entropy
estimates

Hp~— / o (£)logyp (€)d¢ —%E{X?’}”%kﬁﬁ(x’) (213)

by the cumulant approximation.

3. Simulation Study

In this section, we consider the comparison of kernel density entropy estimates
H x and cumulant approximation entropy H ¢ Which are explained in section 2.
For the comparison, we consider the 4 distributions, standard normal, lognormal
with mean 0 and variance 1, uniform and double exponential distribution,
respectively as a population distribution with mean 0 and variance 1. Various
sample sizes are considered for each case. Due to the heavy dependence of kernel
density estimate (2.1) to the bandwidth ~, we allow the two bandwidth selections,
cross—-validatory choice and optimal choice simultaneously to the entropy
estimation of H K-

For the better understanding of the approximation of entropy, we calculated true
entropy H with known the 4 probability density functions. In this case, numerical
integration of (1.4) and cumulant approximation of (2.9) with exact cumulants are
also considered. The results are shown in table 1. That means, the values in table
1 is calculated with known distributional properties without sample variation.

Table 1. Entropy of several distributions.

e True Numerical Cumulant
Distributions integral . .
entropy approximation approximation
Standard normal N(0,1) 1.41893 1.41831 1.23144
Lognormal (0,0.5%) 0.72579 0.72525 0.61608
Uniform(—v/3, v/3) 1.24245 1.24242 1.23143
- Gal A=1) 1.00000 0.98264 -4.58106
xponentia A=+2)| 065343 0.65203 0.85643

From the table 1, we can find that numerical integration approximation estimates
very close to the true entropy for all the considered cases. It looks that cumulant



710 Daehak Kim

approximation method underestimates a little bit but works well generally except
exponential distribution in the presence of no sampling variation. The shape of
exponential distribution with A =1 near 0 may be the reason of the negative
entropy estimate.

For the comparison of entropy estimates from the given data, we generated
random samples from the 4 distributions, respectively with sample size n. Two
symmetric distributions, standard normal and uniform distribution (—+/3,+/3), and
two asymmetric distributions, lognormal and exponential distribution are
considered. We allowed n=>5,10,20,30,50. For the accurate evaluation of
comparison, we have 1,000 replication for each case. The grid for the
cross—validatory choice was set to 100 for appropriate integral range. For optimal
choice of h, we used (2.4). Simpson method is used for numerical integration.

In order to see the average performance of each entropy estimates, mean and
standard error of 1,000 estimates of entropy for each method are calculated. The
results are shown in table 2 and table 3 for the considered 4 distributions,
respectively. Symmetric distributions considered have mean 0 and variance 1, so
there are no need to standardization.

Table 2. Entropy estimates for symmetric distributions.

N(0,1) Uniform(—+/3, v/3)
n ‘HK 'E[C «HK —E[C
CvV OPT CU CVvV OPT CU
5 11.4174(0.591)|1.4338(0.397)(1.7623(0.971){1.0179(0.279)| 1.1652(0017) {1.4471(0.016)
10 |1.5131(0.381)|1.4945(0.249)|1.5860(0.395)(1.0657(0.172)|1.1708(0.018)|1.4507(0.021)
20 [1.5155(0.242)[1.5028(0.164)|1.5060(0.157){1.1229(0.092)|1.1783(0.015) | 1.4486(0.011)

30 [1.4987(0.209)[1.5037(0.133)|1.4791(0.101)1.1441(0.066)|1.1836(0.013) |1.4487(0.009)
50 ]1.4920(0.135)]1.4910(0.103)|1.4526(0.068)|1.1673(0.038)|1.1896(0.010) | 1.4485(0.007)

Figure 1. Convergence plot for the three estimates.
(left : N(0,1), right : Uniform(—+v/3,v/3))
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For normal distribution, it looks that the three estimates works well generally.
Kernel based approximation method looks better than cumulant approximation
method for uniform distribution. It reveals that cumulant approximation can’t be a
good method anymore when losing normality. Note that for uniform distribution,
the pdf is continuous but not a smooth function.

In order to see the trend of three estimates for the change of sample sizes, we
depict the convergence plot in figure 1. From the figure 1, we can see that
entropy based on Kkernel estimates converges to the true entropy as sample size
goes to infinity provide the same results regardless of the choice of bandwidth.
Cumulant approximation method estimates entropy very accurately for normal
distribution but for uniform distribution, there may be no improvement in entropy
estimats as sample size increases. Figure 2 represents box and whisker plot for
the three estimates with 1,000 replications.

Figure 2. Box and whisker plot for the three estimates when n = 50.
(left : normal, center : uniform, right : exponential)

Table 3. Entropy estimates for asymmetric distributions.

Exponential (A=1)

Hy

Lognormal (0,0.5%)
Hy

He
Cu

He
CuU

Cv OPT Cv OPT

5

0.5266(0.337)

0.7931(0.016)

1.4519(0.020)

0.4909(0.330)

0.7962(0.013)

1.4554(0.022)

10

0.5934(0.201)

0.7886(0.014)

1.5008(0.104)

0.5072(0.200)

0.7896(0.015)

1.5338(0.132)

20

0.6161(0.128

0.7779(0.022)

1.6136(0.364)

0.5454(0.121)

0.7772(0.024)

1.6890(0.389)

30

0.7706(0.028)

1.7611(0.774)

0.5716(0.093)

0.7677(0.034)

1.8637(0.786)

50

)
0.6310(0.103)
0.6538(0.068)

0.7650(0.025)

1.8806(0.944)

0.6006(0.063)

0.7592(0.033)

2.0103(0.848)

For lognormal distribution and exponential distribution, the results are shown in
table 3. In this case, kernel based approximation method works better than the
cumulant based approximation. Cumulant approximation method provides a large
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standard errors than kernel approximation method. By considering the asymmetry
of distributions and standardization, we can grasp the superiority of kernel based
approximation than cumulant based approximation for considered distributions..

4. Concluding Remarks

We considered the approximation of differential entropy. Kernel density based
approximation method for the entropy estimates is proposed and compared to
cumulant based approximation method. From the simulation result, we can find
that differential entropy estimate for given sample depends heavily on the
distribution of underlying population. It is rarely hard to find good entropy
estimates always powerful. Cumulant approximation methods works well generally
for normal family. Proposed kernel based approximation method for differential
entropy can be a good candidate in case of non—normal family of distributions.
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