• Title/Summary/Keyword: Data Centric Storage

Search Result 36, Processing Time 0.019 seconds

A Data Centric Storage based on Adaptive Local Trajectory for Sensor Networks (센서네트워크를 위한 적응적 지역 트라젝토리 기반의 데이터 저장소 기법)

  • Lim, Hwa-Jung;Lee, Joa-Hyoung;Yang, Dong-Il;Tscha, Yeong-Hwan;Lee, Heon-Guil
    • The KIPS Transactions:PartC
    • /
    • v.15C no.1
    • /
    • pp.19-30
    • /
    • 2008
  • Sensor nodes are used as a storage space in the data centric storage method for sensor networks. Sensor nodes save the data to the node which is computed by hash table and users also access to the node to get the data by using hash table. One of the problems which the data centric storage method has is that queries from many users who are interested in the popular data could be concentrated to one node. In this case, responses for queries could be delayed and the energy of heavy loaded node could be dissipated fast. This would lead to reduction of network life time. In this paper, ALT, Data Centric Storage based on Adaptive Local Trajectory, is proposed as scalable data centric storage method for sensor network. ALT constructs trajectory around the storage node. The scope of trajectory is increased or decreased based on the query frequency. ALT distributes the query processing loads to several nodes so that delay of response is reduced and energy dissipation is also distributed.

GDCS : Energy Efficient Grid based Data Centric Storage for Sensor Networks (GDCS : 센서네트워크를 위한 에너지 효율적인 그리드 기반 데이터 중심 저장 시스템)

  • Shin, Jae-Ryong;Yoo, Jae-Soo;Song, Seok-Il
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.1
    • /
    • pp.98-105
    • /
    • 2009
  • In this paper, new data centric storage that is dynamically adapted to the change of work load is proposed. The proposed data centric storage distributes the load of hot spot area by using multilevel grid technique. Also, the proposed method is able to use existing routing protocol such as GPSR (Greedy Perimeter Stateless Routing) with small changes. Through simulation the proposed method enhances the lifetime of sensor networks over one of the state-of-the-art data centric storages. We implement the proposed method based on a operating system for sensor networks, and evaluate the performance through running based on a simulation tool.

Performance Analysis of Cluster File System $SANique^{TM}$ based on Storage Area Network (SAN 기반 클러스터 파일 시스템 $SANique^{TM}$의 성능평가 및 분석)

  • Lee, Kyu-Woong
    • Journal of Information Technology Services
    • /
    • v.7 no.1
    • /
    • pp.195-204
    • /
    • 2008
  • As the dependency to network system and demands of efficient storage systems rapidly grows in every networking filed, the current trends initiated by explosive networked data grow due to the wide-spread of internet multimedia data and internet requires a paradigm shift from computing-centric to data-centric in storage systems. Furthermore, the new environment of file systems such as SAN(Storage Area Network) is adopted to the existing storage paradigm for providing high availability and efficient data access. We describe the design issues and system components of $SANique^{TM}$, which is the cluster file system based on SAN environment. We, especially, present the comparative results of performance analysis for the intensive I/O test by using the DBMSs that are operated at the top of cluster file system $SANique^{TM}$, EXT3 and NFS respectively.

Dynamic Data Distribution for Multi-dimensional Range Queries in Data-Centric Sensor Networks (데이타 기반 센서 네트워크에서 다차원 영역 질의를 위한 동적 데이타 분산)

  • Lim, Yong-Hun;Chung, Yon-Dohn;Kim, Myoung-Ho
    • Journal of KIISE:Databases
    • /
    • v.33 no.1
    • /
    • pp.32-41
    • /
    • 2006
  • In data-centric networks, various data items, such as temperature, humidity, etc. are sensed and stored in sensor nodes. As these attributes are mostly scalar values and inter-related, multi-dimensional range queries are useful. To process multi-dimensional range queries efficiently in data-centric storage, data addressing is essential. The Previous work focused on efficient query processing without considering overall network lifetime. To prolong network lifetime and support multi-dimensional range queries, we propose a dynamic data distribution method for multi-dimensional data, where data space is divided into equal-sized regions and linearized by using Hilbert space filling curve.

Skyline Query Processing Method based on Data Centric Storage (데이터 중심 저장구조에 기반한 스카이라인 질의 처리 기법)

  • Yeo, Myung-Ho;Seong, Dong-Ook;Song, Seok-Il;Yoo, Jae-Soo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.3-7
    • /
    • 2009
  • Data centric storages for sensor networks have been proposed to efficiently process multi-dimensional range queries as well as exact matches. Usually, a sensor network does not process only one type of the query but supports various types of queries such as range queries, exact matches and skyline queries. Therefore, a sensor network based on a data centric storage for range queries and exact matches should process skyline queries efficiently. However, existing algorithms for skyline queries have not considered the features of data centric storages. Some of the data centric storages store similar data in sensor nodes that are placed on geographically similar locations. Consequently, all data are ordered in a sensor network. In this paper, we propose a new skyline query processing algorithm that exploits the above features of data centric storages.

  • PDF

A Time-Parameterized Data-Centric Storage Method for Storage Utilization and Energy Efficiency in Sensor Networks (센서 네트워크에서 저장 공간의 활용성과 에너지 효율성을 위한 시간 매개변수 기반의 데이타 중심 저장 기법)

  • Park, Yong-Hun;Yoon, Jong-Hyun;Seo, Bong-Min;Kim, June;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.36 no.2
    • /
    • pp.99-111
    • /
    • 2009
  • In wireless sensor networks, various schemes have been proposed to store and process sensed data efficiently. A Data-Centric Storage(DCS) scheme assigns distributed data regions to sensors and stores sensed data to the sensor which is responsible for the data region overlapping the data. The DCS schemes have been proposed to reduce the communication cost for transmitting data and process exact queries and range queries efficiently. Recently, KDDCS that readjusts the distributed data regions dynamically to sensors based on K-D tree was proposed to overcome the storage hot-spots. However, the existing DCS schemes including KDDCS suffer from Query Hot-Spots that are formed if the query regions are not uniformly distributed. As a result, it causes reducing the life time of the sensor network. In this paper, we propose a new DCS scheme, called TPDCS(Time-Parameterized DCS), that avoids the problems of storage hot-spots and query hot-spots. To decentralize the skewed. data and queries, the data regions are assigned by a time dimension as well as data dimensions in our proposed scheme. Therefore, TPDCS extends the life time of sensor networks. It is shown through various experiments that our scheme outperform the existing schemes.

Design of Global Buffer Managerin Cluster Shared File Syste (클러스터 공유파일 시스템의 전역버퍼 관리기 설계)

  • 이규웅;차영환
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.1
    • /
    • pp.101-108
    • /
    • 2004
  • As the dependency to network system and demands of efficient storage systems rapidly grows in every networking filed, the current trends initiated by explosive networked data grow due to the wide-spread of internet multimedia data and internet requires a paradigm shift from computing-centric to data-centric in storagesystems. Furthermore, the new environment of file systems such as NAS(Network Attached Storage) and SAN(Storage Area Network) is adopted to the existing storage paradigm for Providing high availability and efficient data access. We describe the design issues and system components of SANiqueTM, which is the cluster file system based on SAN environment. SANiqueTM has the capability of transferring the user data from the network-attached SAN disk to client applications directly We, especially, present the protocol and functionality of the global buffer manager in our cluster file system.

  • PDF

An Proxy Trajectory Based Storage in Sensor Networks (센서네트워크에서의 프록시 트라젝토리 기반 데이터 저장 기법)

  • Lim, Hwa-Jung;Lee, Heon-Guil
    • The KIPS Transactions:PartC
    • /
    • v.15C no.6
    • /
    • pp.513-522
    • /
    • 2008
  • Efficient data dissemination is one of the important subjects for sensor networks. High accessibility of the sensed data can be kept by deploying the data centric storage approach in which data is stored over the nodes in the sensor network itself rather than external storages or systems. The advantage of this approach is its direct accessibility in a real-time without the severe burden on delay and power dissipation on the data path to the external storages or systems. However, if the queries from many users are concentrated to the few nodes with data, then the response time could be increased and it could lead to the reduction of network life time by rapid energy dissipation caused by concentrated network load. In this paper, we propose a adaptive data centric storage scheme based on proxy trajectory (APT) mechanism. We highlight the data centric storage mechanism by taking account of supporting large number of users, and make it feasible to provide high-performance accessibility when a non-uniform traffic pattern is offered. Storing data around the localized users by considering spatial data-access locality, the proxy trajectory of APT provides fast response for the users. The trajectory, furthermore, may help the mobile users to roams freely within the area they dwell.

Approximate Lost Data Recovery Scheme for Data Centric Storage Environments in Wireless Sensor Networks (무선 센서 네트워크 데이터 중심 저장 환경을 위한 소실 데이터 근사 복구 기법)

  • Seong, Dong-Ook;Park, Jun-Ho;Hong, Seung-Wan;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.7
    • /
    • pp.21-28
    • /
    • 2012
  • The data centric storage (DCS) scheme is one of representative methods to efficiently store and maintain data generated in wireless sensor networks. In the DCS schemes, each node has the specified data range for storing data. This feature is highly vulnerable to the faults of nodes. In this paper, we propose a new recovery scheme for the lost data caused by the faults of nodes in DCS environments. The proposed scheme improves the accuracy of query results by recovering the lost data using the spatial continuity of physical data. To show the superiority of our proposed scheme, we simulate it in the DCS environments with the faults of nodes. In the result, our proposed scheme improves the accuracy by about 28% through about 2.5% additional energy consumption over the existing scheme.

Efficient Sensor Data Compression Algorithm for Data-Centric Storage (데이터 중심 저장 기법을 위한 효율적인 센서 데이터 압축 기법)

  • Roh, Kyu-Jong;Yeo, Myung-Ho;Seong, Dong-Ook;Bok, Kyoung-Soo;Shin, Jae-Ryong;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.11
    • /
    • pp.58-67
    • /
    • 2010
  • Data-centric storage schemes(DCS) are one of representative researches that efficiently store and manage sensor readings in sensor nodes in the sensor networks. In DCS, a sensor sends the sensed data to a specific node in order to store them. However, it has a problem that sensor nodes consume a lot of energy for transmitting their readings to remote sensor node. In this paper, we propose a novel sensor data compression algorithm to reduce communication costs for DCS. The proposed algorithm establishes a safe region and transmits the sensed data only when current measurement is out of the safe region, As a result, the proposed algorithm extends network life time and reduces data transmission. It is shown through performance evaluation that our proposed algorithm reduces energy consumption by about 60% over the conventional algorithm.