• 제목/요약/키워드: Darcy's law

Search Result 90, Processing Time 0.041 seconds

Influence of Flocculants During Vacuum Dewatering of Radioactive Slurry Waste (방사성 슬러리 폐액의 탈수에서 응집제 효과)

  • 정경환;이동규;정기정
    • Journal of Energy Engineering
    • /
    • v.10 no.2
    • /
    • pp.114-119
    • /
    • 2001
  • TRIGA Mark-II&III 연구로서의 운영과정에서 발생된 방사성 슬러리 함유 폐액에 대하여 음이온, 앙이온, 그리고 비이온 응집제를 첨가하였을 때의 여과 효과를 실험실 규모의 진공여과 장치로 연구하였다. 여과 실험 자료를 이용하여 Darcy’s Law에서 유도된 여과 케익 저항 값을 산출하였다. 응집제 사용으로 응집제를 사용하지 않은 경우롸 비교하여 케익 저항값의 개선은 있었지만, 수분함량은 증가하였다. 각각의 응집제 사용에 따른 침전율, 여과 케익의 수분함량, 그리고 여과 케익 저항 값을 비교한 결과 음이온 응집제 12~16ppm/$\ell$ waste를 사용하였을 경우가 가장 효과적인 것으로 나타났다.

  • PDF

Estimation of Oil Quantity in Porous Bearing

  • kohno, Hajime
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.594-595
    • /
    • 2006
  • Porous bearings are lubricated the oil that is contained in porous metal. Then they are always used with no oil supply, because of that, widely used electric motors. But, if oil flow out less than the limit, troubles often happen. This report shows that attempt of estimating oil quantity in porous bearing by using calculation that based Reynols' equation and Darcy's law, aimed of developing long life bearing. And comparing with experimental and calculation result, we show possibility of estimating rest oil quantity in porous bearing at steadry state by calculation.

  • PDF

An Analysis of Thermal Convection in Agricultural-Products Storge System (농산물 저장 시설에서의 열대류 현상의 해석)

  • Kim, Min-Chan;Hyeon, Myeong-Taek;Go, Jeong-Sam
    • Food Science and Preservation
    • /
    • v.4 no.1
    • /
    • pp.27-32
    • /
    • 1997
  • Natural convection in agricultural-products storage system was analysed theoretically, The storage system was modelled by Internally heated fluid saturated porous layer. Darcy's law was used to explain characteristics of fluid motion. Stability equations were obtained under the linear stability theory and transfer characteristics were modelled by the shape assumption. Based on the modelling of transfer characteristics, heat trasnfer correlations were derived theoretically.

  • PDF

Manufacture and Characteristics of Heat Conductive Blocks for Chemical Heat Pump (화학열펌프용 열전도성 블록의 제조)

  • 한종훈;조길원;이건홍
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.230-235
    • /
    • 1995
  • 염-암모니아계 화학열펌프기술의 핵심인 전도성 블록의 특성파악을 위한 기초단계 연구로서 전도성 블록의 제조 및 기초물성분석에 관한 연구를 수행하였다. 황산이 함유된 천연흑연을 열처리하여 팽창흑연을 준비하고 특성을 분석하였다. 이 팽창흑연을 압축, 성형하여 흑연지지체를 제조하였으며, 성형된 지지체에 진공기법을 이용하여 염을 함침하고 건조과정을 거쳐 전도성 블록을 제조하였다. 전도성 블록의 특성분석으로서 염의 입자내에 분산정도는 EPMA/EDS, 기공율 및 기공크기 분포는 헬륨침투법과 수은 침투법, 기체투과도는 Darcy's law를 적용하고, 열전도도 측정은 전이 일차원 열류기법을 이용하였다. 전도성 블록이 암모니아와 반응 했을때 부피팽창을 관찰하였으며, 반응기에서 전도성블록의 온도분포를 관찰하였다. 본 연구에서 제조된 블록은 염이 균일하게 분산되어 있었으며 기공율은 제조조건에 따라 0.4 ∼ 0.83, 기체투과도는 0.01 ∼ 10 Darcy, 열전도도는 흑연지지체의 겉보기 밀도가 110 kg/㎥ 인 경우, 반지름방향의 열전도도, λr은 20 W/mK, 축방향의 열전도도, λa는 17 W/mK 이였다. 겉보기밀도가 150 kg/㎥ 인 경우, λr은 22 W/wK, λa는 20 W/wK 이였다. 전도성 블록의 부피팽창은 비가역적이었으며 대부분이 반지름 방향보다 축방향에서 팽창이 일어났다. 온도분포는 초기 반응의 kinetics가 내부온도를 지배하였으나, 시간이 경과후 반응기 내부온도는 외부열전달에 의해 지배되었다.

  • PDF

Parametric study of porous media as substitutes for flow-diverter stent

  • Ohta, Makoto;Anzai, Hitomi;Miura, Yukihisa;Nakayama, Toshio
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.2
    • /
    • pp.111-125
    • /
    • 2015
  • For engineers, generating a mesh in porous media (PMs) sometimes represents a smaller computational load than generating realistic stent geometries with computer fluid dynamics (CFD). For this reason, PMs have recently become attractive to mimic flow-diverter stents (FDs), which are used to treat intracranial aneurysms. PMs function by introducing a hydraulic resistance using Darcy's law; therefore, the pressure drop may be computed by test sections parallel and perpendicular to the main flow direction. However, in previous studies, the pressure drop parallel to the flow may have depended on the width of the gap between the stent and the wall of the test section. Furthermore, the influence of parameters such as the test section geometry and the distance over which the pressure drops was not clear. Given these problems, computing the pressure drop parallel to the flow becomes extremely difficult. The aim of the present study is to resolve this lack of information for stent modeling using PM and to compute the pressure drop using several methods to estimate the influence of the relevant parameters. To determine the pressure drop as a function of distance, an FD was placed parallel and perpendicular to the flow in test sections with rectangular geometries. The inclined angle method was employed to extrapolate the flow patterns in the parallel direction. A similar approach was applied with a cylindrical geometry to estimate loss due to pipe friction. Additionally, the pressure drops were computed by using CFD. To determine if the balance of pressure drops (parallel vs perpendicular) affects flow patterns, we calculated the flow patterns for an ideal aneurysm using PMs with various ratios of parallel pressure drop to perpendicular pressure drop. The results show that pressure drop in the parallel direction depends on test section. The PM thickness and the ratio of parallel permeability to perpendicular permeability affect the flow pattern in an ideal aneurysm. Based on the permeability ratio and the flow patterns, the pressure drop in the parallel direction can be determined.

Efficient Representation of Pore Flow, Absorption, Emission and Diffusion using GPU-Accelerated Cloth-Liquid Interaction

  • Jong-Hyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.23-29
    • /
    • 2024
  • In this paper, we propose a fast GPU-based method for representing pore flow, absorption, emission, and diffusion effects represented by cloth-liquid interactions using smoothed particle hydrodynamics (SPH), a particle-based fluid solver: 1) a unified framework for GPU-based representation of various physical effects represented by cloth-liquid interactions; 2) a method for efficiently calculating the saturation of a node based on SPH and transferring it to the surrounding porous particles; 3) a method for improving the stability based on Darcy's law to reliably calculate the direction of fluid absorption and release; 4) a method for controlling the amount of fluid absorbed by the porous particles according to the direction of flow; and finally, 5) a method for releasing the SPH particles without exceeding their maximum mass. The main advantage of the proposed method is that all computations are computed and run on the GPU, allowing us to quickly model porous materials, porous flows, absorption, reflection, diffusion, etc. represented by the interaction of cloth and fluid.

Pressure Loss and Enhancement of Heat Transfer in an Annulus Filled with Aluminum Foam

  • Noh, Joo-Suk;Han, Young-Hee;Lee, Kye-Bock;Lee, Chung-Gu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2007
  • An experimental investigation was carried out for 4 different types of the aluminum foam heat sinks which were inserted into the annulus. The purpose of this study is to examine the feasibility of a heat sink with high performance forced convective water cooling in the annulus. The local wall temperature distribution, inlet and outlet pressures and temperatures, and heat transfer coefficients were measured for heat flux of 13.6, 18.9, 25.1, 31.4 $kW/m^2$ and Reynolds number ranged from 120 to 9,000. Experimental results show that the departure from the Darcy's law is evident from the pressure loss and the friction factor is much higher while the significant enhancement in Nusselt number is obtained, and average Nusselt number of aluminum foam with high pore density is much higher than that of aluminum foam with low pore density. Correlations for the friction factor is proposed and used for design of thermal applications.

Effect of Drying Methods on Longitudinal Liquid Permeability of Korean Pine

  • Lee, Min-Gyoung;Lu, Jianxiong;Jiang, Jiali;Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.49-55
    • /
    • 2008
  • This study was carried to investigate the effects of steaming and four different drying methods on the longitudinal liquid permeability of Korean pine (Pinus koraiensis Sieb.et Zucc.) board. Four drying methods were air drying, conventional kiln drying, microwave-vacuum drying and high temperature drying. Darcy equation was used for calculating the specific permeability of the small sapwood specimens taken from the treated boards while capillary rising method was used for the heartwood specimens. The sapwood specimens were extracted with water and benzene-alcohol solution to examine the mechanism of liquid flow in treated wood. No significant correlation was found between specific permeability and the number of resin canals of the sapwood specimens. Extraction decreased the differences of specific permeabilities of the sapwood specimens between the five treatment methods. The effects of extraction on the longitudinal permeability are different between five treatments. The fluid path in heartwood was observed by dynamic observation method.

Sensitivity Analysis of Infiltration using a Mass Conservative Numerical Solution of Richards Equation (Richairds 방정식의 질량보존적 수치해석 해법에 의한 침투량의 민감도분석)

  • Choi, Hyun Il
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.683-688
    • /
    • 2007
  • Water flow into unsaturated soils is most often modeled by Richards equation consisting of the mass conservation law and Darcy's law. Three standard forms of Richards equation are presented as the head (${\Psi}$)-based form, the moisture content (${\theta}$) based form, and the mixed form. Numerical solutions of these partial differential equations with highly nonlinear terms can cause poor results along with significant mass balance errors. The numerical solution based on the mixed form of Richards equation is known that the mass is perfectly conserved without any additional computational efforts. The aim of this study is to develop fully implicit numerical scheme of Richards equation for one-dimensional vertical unsaturated flow in homogeneous soils using the finite difference approximation, and then to perform sensitivity analysis of infiltration to the variations in the unsaturated soil properties and to different soil types.

Development and Application of a Landfill Gas Migration Model (폐기물 매립지에서의 가스 거동에 관한 모델 개발과 적용)

  • Park, Yu-Chul;Lee, Kang-Kun;Park, Chul-Hwi;Kim, Yong-Woo
    • Economic and Environmental Geology
    • /
    • v.29 no.3
    • /
    • pp.325-333
    • /
    • 1996
  • numerical model is developed to estimate gas flow in the landfill site. Darcy's law, the mass conservation law, and the ideal gas state equation are combined to compose the governing equation for the steady-state and transient-state gas flows. The finite element method (FEM) is used as the numerical solution scheme. Two-dimensional radial symmetric triangular ring element is used to discretize the simulation domain. The steady state model developed in this study is compared with AIRFLOW that is a commercial model developed by Hydrologic Inc. Mass balance test is performed on the transient gas flow simulation. The developed model is applied to analyze the gas extraction experiment performed by Daewoo Institute of Construction Technology at the Nanjido landfill in 1993. The developed model was registered at Korea Computer Program Protection Foundation.

  • PDF