Sensitivity Analysis of Infiltration using a Mass Conservative Numerical Solution of Richards Equation

Richairds 방정식의 질량보존적 수치해석 해법에 의한 침투량의 민감도분석

  • Choi, Hyun Il (Center for Atmospheric Science, Illinois State Water Survey)
  • 최현일 (미국 일리노이주 수자원조사국 기상연구팀 연구원)
  • Received : 2007.09.07
  • Accepted : 2007.09.12
  • Published : 2007.09.30

Abstract

Water flow into unsaturated soils is most often modeled by Richards equation consisting of the mass conservation law and Darcy's law. Three standard forms of Richards equation are presented as the head (${\Psi}$)-based form, the moisture content (${\theta}$) based form, and the mixed form. Numerical solutions of these partial differential equations with highly nonlinear terms can cause poor results along with significant mass balance errors. The numerical solution based on the mixed form of Richards equation is known that the mass is perfectly conserved without any additional computational efforts. The aim of this study is to develop fully implicit numerical scheme of Richards equation for one-dimensional vertical unsaturated flow in homogeneous soils using the finite difference approximation, and then to perform sensitivity analysis of infiltration to the variations in the unsaturated soil properties and to different soil types.

질량보존의 법칙과 Darcy의 법칙으로 표현되는 Richards 방정식은 비포화대의 토양수분흐름을 모의하는데 널리 사용되어 왔다. Richards 방정식은 압력수두의 항으로 표현되는 방정식, 토양수분의 항으로 표현되는 방정식, 그리고 이 둘을 혼합한 형태의 방정식 등, 세가지 형태로 표현할 수 있다. 고차의 비선형 항들을 포함하는 이 편미분방정식들을 수치해석방법으로 풀 때, 질량 비보존을 수반하는 오류의 결과가 초래될 수 있다. 세가지 방정식들 중 혼합형 Richards 방정식이, 다른 추가적인 계산없이 질량을 온전히 보존하는 것으로 알려져 있다. 이 연구의 목적은 동질성 토양에서의 1차원적 연직방향 비포화수 흐름모의를 위해, Richards 방정식의 질량보존적 수치해석법을 완전음해 유한차분법으로 개발하고, 이를 통해 민감도 분석을 실시하여 토양특성인자들과 토양종류에 따른 침투율의 변화를 살펴보는 데 있다.

Keywords

References

  1. Alien, M. B. and Murphy, C., A Finite Element Collocation Method for Variably Saturated Flows in Porous Media, Numer. Meth. Partial Diff. Eqn., 3, pp. 229-239 (1985)
  2. Brunone, B., Ferrante, M., Romano, N. and Santini, A., Numerical Simulations of One-Dimensional Infiltration into Layered Soils with the Richards Equation Using Different Estimates of the Interlayer Conductivity, Vadose Zone J., 2, pp. 193-200. (2003) https://doi.org/10.2113/2.2.193
  3. Celia, M. A., Ahuja, L. R. and Pinder, G. F., Orthogonal Collocation and Alternating Direction Procedures for Unsaturated Flow Problems, Adv. Water Resour., 10(4), 178-187 (1987) https://doi.org/10.1016/0309-1708(87)90027-3
  4. Celia, M. A., Bouloutons, E. T. and Zarba, R. L., A General Mass-conservative Numerical Solution for the Unsaturated Flow Equation, Water Resour. Res., 26(7), pp. 1483-1496 (1990) https://doi.org/10.1029/WR026i007p01483
  5. Freeze, R. A., Three-dimensional, Transient, Saturated-unsaturated Flow in a Groundwater Basin, Water Resour. Res., 7(2), pp. 347-366 (1971) https://doi.org/10.1029/WR007i002p00347
  6. Haverkamp, R., Vaclin, M., Touma, J., Wierenga, P. J. and Vachaud, G., A Comparison of Numerical Simulation Models for One-dimensional Infiltration, Soil Sci. Soc. Am. J., 41, pp. 285-294 (1977) https://doi.org/10.2136/sssaj1977.03615995004100020024x
  7. Haverkamp, R. and Vauclin, M., A Note on Estimating Finite Difference Interblock Hydraulic Conductivity Values for Transient Unsaturated Flow Problems, Water Resour. Res., 15, pp. 181-187 (1979) https://doi.org/10.1029/WR015i001p00181
  8. Hayhoe, H. N., Study of the Relative Efficiency of Finite Difference and Galerkin Techniques for Modeling Soil-water Transfer, Water Resour. Res., 14(1), pp. 97-102 (1978) https://doi.org/10.1029/WR014i001p00097
  9. Huyakorn, P. S., Thomas, S. D. and Thompson, B. M., Techniques for Making Finite Elements Competitive in Modeling Flow in Variably Saturated Porous Media, Water Resour. Res., 20(8), pp. 1099-1115 (1984) https://doi.org/10.1029/WR020i008p01099
  10. Milly, P. C. D., A mass-conservative procedure for timestepping in models of unsaturated flow, Adv. Water Resour., 8, pp. 32-36 (1985) https://doi.org/10.1016/0309-1708(85)90078-8
  11. Narasimhan, T. N. and Witherspoon, P. A., An Integrated Finite Difference Method for Analyzing Fluid Flow in Porous Media, Water Resour. Res., 12, pp. 57-64 (1976) https://doi.org/10.1029/WR012i001p00057
  12. Neumann, S. P., Saturated-unsaturated Seepage by Finite Elements, J. Hyd. Div., ASCE, HY12, pp. 2233-2250 (1973)
  13. Richards, L., Capillary conduction of liquids through porous mediums, Physics, 1, pp. 318-333 (1931) https://doi.org/10.1063/1.1745010
  14. Romano, N., Brunone, B. and Santini, A., Numerical Analysis of One-dimensional Unsaturated Flow in layered soils, Adv. Water Resour., 21, pp. 315-324 (1998) https://doi.org/10.1016/S0309-1708(96)00059-0
  15. Schnabel, R. R., and Richie, E. B., Calculation of Internodal Conductances for Unsaturated Flow Simulations: A comparison, Soil Sci. Soc. Am. J., 48, pp. 1006-1010 (1984) https://doi.org/10.2136/sssaj1984.03615995004800050010x
  16. van Genuchten, M. T., A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 44(5). pp. 982-898 (1980)