• Title/Summary/Keyword: Damping devices

Search Result 234, Processing Time 0.027 seconds

Optimization Design of Damping Devices for a Super-Tall Building Using Computational Platform (전산플랫폼을 이용한 초고층구조물의 감쇠장치 최적화 설계)

  • Joung, Bo-Ra;Lee, Sang-Hyun;Chung, Lan;Choi, Hyun-Chul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.145-152
    • /
    • 2015
  • In the study, the effects of damping devices on damping ratio increase and wind-load reduction were investigated based on the computational platform, which is one of the parametric modeling methods. The computational platform helps the designers or engineers to evaluate the efficacy of the numerous alternative structural systems for irregular Super-Tall building, which is crucial in determining the capacity and the number of the supplemental damping devices for adding the required damping ratios to the building. The inherent damping ratio was estimated based on the related domestic and foreign researches conducted by using real wind-load records. Two types of damping devices were considered: One is inter-story installation type passive control devices and the other is mass type active control devices. The supplemental damping ratio due to the damping devices was calculated by means of equivalent static analysis using an equation suggested by FEMA. The optimal design of the damping devices was conducted by using the computational platform. The structural element quantity reduction effect resulting from the installation of the damping devices could be simply assessed by proposing a wind-load reduction factor, and the effectiveness of the proposed method was verified by a numerical example of a 455m high-rise building. The comparison between roof displacement and the story shear forces by the nonlinear time history analysis and the proposed method indicated that the proposed method could simply but approximately estimate the effects of the supplemental damping devices on the roof displacement and the member force reduction.

Seismic Retrofit Using Damping Devices for Short-period Structures Excited by Ground Accelerations Similar to Gyeong-ju Earthquakes (감쇠장치를 사용한 경주지진과 유사한 특성을 가지는 지반가속도로 가진된 단주기구조물 내진성능보강)

  • Roh, Ji Eun;Lee, Sang Hyun;Seo, Jun Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.503-508
    • /
    • 2016
  • In this study, effectiveness of seismic retrofitting methods using passive damping devices was investigated through numerical analyses of short-period structures under earthquakes which have short-duration and high-frequency impulse characteristics similar to Geyongju earthquakes. Displacement spectra of elastic systems and ductility demand of inelastic systems were evaluated by increasing viscous or friction damping. The damping devices could reduce responses of the structures with shorter structural period than 0.2s. The earthquakes similar to impulse load did not induce the responses of the structures with longer period than 0.4s, and the effects of the damping devices which generates damping forces proportional to structural responses became insignificant.

Evaluation of the Equivalent First Modal Damping Ratio of a Structure with Additional Damping Devices (부가감쇠 장치가 설치된 구조물의 1차 모드 등가 감쇠비 산정)

  • Lee, Sang-Hyun;Min, Kyung-Won;Hwang, Jae-Seung;Lee, Young-Cheol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.459-466
    • /
    • 2002
  • The purpose of this study is to propose a new method for evaluating equivalent damping ratios of a structure with supplemental damping devices to assess their control effect quantitatively. A MDOF system is transformed to an equivalent SDOF system based on the assumption that the first mode dominates structural response. Approximate closed-form formulas for the evaluation of the first damping ratio are presented for various damping devices. Through numerical analysis of a ten-story building equipped with damping devices, the effectiveness of equivalent SDOF model and closed form formulas are verified.

  • PDF

Application of Combustion Stabilization Devices to Liquid Rocket Engine (액체 로켓엔진에서 연소 안정화기구의 적용에 관한 연구)

  • Sohn Chae-Hoon;Moon Yoon-Wan;Ryu Chul-Sung;Kim Young-Mog
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.259-262
    • /
    • 2002
  • Application of combustion stabilization devices such as baffle and acoustic cavity to liquid propellant rocket engine is investigated to suppress high-frequency combustion instability, i.e., acoustic instability. First, these damping devices are designed based on linear damping theory. As a principal design parameter, damping factor is considered and calculated numerically in the chambers with various specifications of these devices. Next, the unbaffled chambers with/without acoustic cavities are tested experimentally for several operating conditions. The unbaffled chamber shows the specific stability characteristics depending on the operating condition and has small dynamic stability margin. The most hazardous frequency is clearly identified through Fast Fourier Transform. As a result, the acoustic cavity with the present design has little stabilization effect in this specific chamber. Finally, stability rating tests are conducted with the baffled chamber, where evident combustion stabilization is observed, which indicates sufficient damping effect. Thrust loss caused by baffle installation is about $2{\%}$.

  • PDF

Mitigation of motions of tall buildings with specific examples of recent applications

  • Kareem, Ahsan;Kijewski, Tracy;Tamura, Yukio
    • Wind and Structures
    • /
    • v.2 no.3
    • /
    • pp.201-251
    • /
    • 1999
  • Flexible structures may experience excessive levels of vibration under the action of wind, adversely affecting serviceability and occupant comfort. To ensure the functional performance of a structure, various design modifications are possible, ranging from alternative structural systems to the utilization of passive and active control devices. This paper presents an overview of state-of-the-art measures that reduce the structural response of buildings, including a summary of recent work in aerodynamic tailoring and a discussion of auxiliary damping devices for mitigating the wind-induced motion of structures. In addition, some discussion of the application of such devices to improve structural resistance to seismic events is also presented, concluding with detailed examples of the application of auxiliary damping devices in Australia, Canada, China, Japan, and the United States.

Closed Form Formulas for Equivalent Damping Ratios of a Linear Structure Equipped with Damping Devices (제진장치가 설치된 구조물의 등가감쇠비)

  • Hwang, Jae-Seung;Lee, Sang-Hyun;Min, Kyung-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.370-377
    • /
    • 2002
  • Hwang et al (2001) proposed a new method for an evaluation of equivalent damping ratios of a linear structure with linear or nonlinear damping devices. This procedure has a disadvantage that it requires time history analysis for the whole system including damping devices, which may be troublesome for practical application. To tackle this problem closed form formulas for equivalent damping ratios are proposed in this study. It is assumed that the responses of MDOF system can be reproduced by an equivalent SDOF system which vibrates in a fundamental mode. The numerical analyses of a ten-story building equipped with linear viscous damper or active mass damper or friction damper show the effectiveness of equivalent SDOF model and closed form formulas.

  • PDF

Performance evaluation of inerter-based damping devices for structural vibration control of stay cables

  • Huang, Zhiwen;Hua, Xugang;Chen, Zhengqing;Niu, Huawei
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.615-626
    • /
    • 2019
  • Inerter-based damping devices (IBBDs), which consist of inerter, spring and viscous damper, have been extensively investigated in vehicle suspension systems and demonstrated to be more effective than the traditional control devices with spring and viscous damper only. In the present study, the control performance on cable vibration reduction was studied for four different inerter-based damping devices, namely the parallel-connected viscous mass damper (PVMD), series-connected viscous mass damper (SVMD), tuned inerter dampers (TID) and tuned viscous mass damper (TVMD). Firstly the mechanism of the ball screw inerter is introduced. Then the state-space formulation of the cable-TID system is derived as an example for the cable-IBBDs system. Based on the complex modal analysis, single-mode cable vibration control analysis is conducted for PVMD, SVMD, TID and TVMD, and their optimal parameters and the maximum attainable damping ratios of the cable/damper system are obtained for several specified damper locations and modes in combination by the Nelder-Mead simplex algorithm. Lastly, optimal design of PVMD is developed for multi-mode vibration control of cable, and the results of damping ratio analysis are validated through the forced vibration analysis in a case study by numerical simulation. The results show that all the four inerter-based damping devices significantly outperform the viscous damper for single-mode vibration control. In the case of multi-mode vibration control, PVMD can provide more damping to the first four modes of cable than the viscous damper does, and their maximum control forces under resonant frequency of harmonic forced vibration are nearly the same. The results of this study clearly demonstrate the effectiveness and advantages of PVMD in cable vibration control.

Damping Applications of Ferrofluids: A Review

  • Huang, Chuan;Yao, Jie;Zhang, Tianqi;Chen, Yibiao;Jiang, Huawei;Li, Decai
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.109-121
    • /
    • 2017
  • Ferrofluids are a special category of smart nanomaterials which shows normal liquid behavior coupled with superparamagnetic properties. One of the earliest and most prospective applications of ferrofluids is in damping, which has prominent advantages compared with conventional damping devices: simplicity, flexibility and reliability. This paper presents the basic principles that play a major role in the design of ferrofluid damping devices. The characteristics of typical ferrofluid damping devices including dampers, vibration isolators, and dynamic vibration absorbers are compared and summarized, and then recent progress of vibration energy harvesters based on ferrofluid is briefly described. Additionally, we proposed a novel ferrofluid dynamic vibration absorber in this paper, and its damping efficiency was verified with experiments. In the end, the critical problems and research directions of the ferrofluid damping technology in the future are raised.

Development of a methodology for damping of tall buildings motion using TLCD devices

  • Diana, Giorgio;Resta, Ferruccio;Sabato, Diego;Tomasini, Gisella
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.629-646
    • /
    • 2013
  • One of the most common solutions adopted to reduce vibrations of skyscrapers due to wind or earthquake action is to add external damping devices to these structures, such as a TMD (Tuned Mass Damper) or TLCD (Tuned Liquid Column Damper). It is well known that a TLCD device introduces on the structure a nonlinear damping force whose effect decreases when the amplitude of its motion increases. The main objective of this paper is to describe a Hardware-in-the-Loop test able to validate the effectiveness of the TLCD by simulating the real behavior of a tower subjected to the combined action of wind and a TLCD, considering also the nonlinear effects associated with the damping device behavior. Within this test procedure a scaled TLCD physical model represents the hardware component while the building dynamics are reproduced using a numerical model based on a modal approach. Thanks to the Politecnico di Milano wind tunnel, wind forces acting on the building were calculated from the pressure distributions measured on a scale model. In addition, in the first part of the paper, a new method for evaluating the dissipating characteristics of a TLCD based on an energy approach is presented. This new methodology allows direct linking of the TLCD to be directly linked to the increased damping acting on the structure, facilitating the preliminary design of these devices.

Design of Viscoelastic Dampers Using Effective Damping Ratio (유효감쇠비를 이용한 점탄성 감쇠기의 설계)

  • 최현훈;김진구
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.371-378
    • /
    • 2001
  • To enhance seismic performance of a structure ATC-40 and FEMA-273 propose technical strategies such as increasing strength, altering stiffness, and reducing demand by employing base isolation and energy dissipation devices. Specifically the energy dissipation devices directly increase the ability of the structure to dampen earthquake response. However nonlinear dynamic time history analysis of a structure with energy dissipation devices is complicated and time consuming. In this study a simple and straightforward procedure is developed using effective damping ratio to obtain the required amount of viscoelastic dampers in order to meet given performance objectives. Parametric study has been performed for the period of the structure, yield strength, and the stiffness after the first yield. According to the analysis results, earthquake demand and required damping ratio were reduced by installing viscoelastic dampers. The results also show that with the addition of the supplemental damping evaluted by the proposed method the performance of the model structures are well restrained within the target point.

  • PDF