Browse > Article
http://dx.doi.org/10.4283/JMAG.2017.22.1.109

Damping Applications of Ferrofluids: A Review  

Huang, Chuan (School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University)
Yao, Jie (School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University)
Zhang, Tianqi (School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University)
Chen, Yibiao (School of Mechanical Engineering, University of Science and Technology Beijing)
Jiang, Huawei (School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University)
Li, Decai (School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University)
Publication Information
Abstract
Ferrofluids are a special category of smart nanomaterials which shows normal liquid behavior coupled with superparamagnetic properties. One of the earliest and most prospective applications of ferrofluids is in damping, which has prominent advantages compared with conventional damping devices: simplicity, flexibility and reliability. This paper presents the basic principles that play a major role in the design of ferrofluid damping devices. The characteristics of typical ferrofluid damping devices including dampers, vibration isolators, and dynamic vibration absorbers are compared and summarized, and then recent progress of vibration energy harvesters based on ferrofluid is briefly described. Additionally, we proposed a novel ferrofluid dynamic vibration absorber in this paper, and its damping efficiency was verified with experiments. In the end, the critical problems and research directions of the ferrofluid damping technology in the future are raised.
Keywords
ferrofluid; damping applications; damper; vibration isolator; dynamic vibration absorber; vibration energy harvester;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Wang, Q. Zhang, L. Zhao, and E. S. Kim, IEEE International Conference on MICRO Electro Mechanical Systems, 122 (2015).
2 J. G. Monroe and S. M. Thompson, Proc. SPIE 9493, 94930G (2015).
3 S. F. Alazemi, A. Bibo, and M. F. Daqaq, Eur. Phys. J. Spec. Top. 224, 2993 (2015).   DOI
4 D. Kim and K. Yun, Journal of Physics: Conference Series 660, 012108 (2015).   DOI
5 D. Kim, S. Yu, B. G. Kang, and K. S. Yun, J. Microelectromech. S. 24, 516 (2015).   DOI
6 Y. S. Kim, J. Magn. 20, 252 (2015).   DOI
7 P. Stephen Solomon, Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles, U.S. Patent (3215572), (1965).
8 J. Rabinow, Trans. Am. Inst. Electr. Eng. 67, 1308 (1948).   DOI
9 S. Genc and B. Derin, Curr. Opin. Chem. Eng. 3, 118 (2014).   DOI
10 S. Wang and D. Li, Electron. Lett. 51, 1693 (2015).   DOI
11 P. P. Phule and J. M. Ginder, MRS Bull. 23, 19 (1998).
12 F. Imaduddin, S. A. Mazlan, and H. Zamzuri, Mater. Des. 51, 575 (2013).   DOI
13 Z. Wang, G. Bossis, O. Volkova, V. Bashtovoi, and M. Krakov, J. Intell. Mater. Syst. Struct. 14, 93 (2003).   DOI
14 Feasibility study and model development for a ferrofluid viscous damper, Goddard Space Flight Center, Maryland (1967).
15 B. Leo and L. Rudolph, Viscous damper using magnetic ferrofluid, U.S. Patent (3538469), (1970).
16 R. Moskowitz, IEEE Spectr. 12, 53 (1975).
17 K. Raj and R. Moskowitz, J. Magn. Magn. Mater. 85, 233 (1990).   DOI
18 R. E. Rosensweig, Sci. Am. 247, 136 (1982).
19 B. D. Moscowitz and K. Raj, Mach. Des. 67, 57 (1995).
20 J. Popplewell and S. Charles, IEEE Trans. Magn. 17, 2923 (1981).   DOI
21 C. Scherer and A. M. Figueiredo Neto, Braz. J. Phys. 35, 718 (2005).   DOI
22 D. Mayer, Adv. Electr. Electron. Eng. 7, 9 (2008).
23 C. Buzduga, The Third International Symposium on Electrical Engineering and Energy Converters, 24 (2009).
24 K. Raj, B. Moskowitz, and R. Casciari, J. Magn. Magn. Mater. 149, 174 (1995).   DOI
25 F. Ezekiel, Mechanical Engineering 97, 94 (1975).
26 K. Raj and R. Moskowitz, IEEE Trans. Magn. 16, 358 (1980).   DOI
27 S. Odenbach, Lect. Notes. Phys. 594 (2002).
28 R. E. Rosensweig, Annu. Rev. Fluid. Mech. 19, 437 (1987).   DOI
29 I. Torres-Diaz and C. Rinaldi, Soft Matter 10, 8584 (2014).   DOI
30 J. Philip and J. M. Laskar, Journal of Nanofluids 1, 3 (2012).   DOI
31 H. Shokrollahi, Mater. Sci. Eng. C 33, 2476 (2013).   DOI
32 R. J. Yang, H. H. Hou, Y. N. Wang, and L. M. Fu, Sens. Actuators: B 224, 1 (2016).   DOI
33 R. E. Rosensweig, Ferrohydrodynamics, Cambrige University Press, Cambridge (1985).
34 R. E. Rosensweig, AIAA J. 4, 1751 (1966).   DOI
35 R. E. Rosensweig, Nature 210, 613 (1966).   DOI
36 D. Calarasu, C. Cotae, and R. Olaru, J. Magn. Magn. Mater. 201, 401 (1999).   DOI
37 S. S. Rao and F. F. Yap, Mechanical vibrations (forth edition), Addison-Wesley, New York (1995).
38 D. L. Miller, Magnetic viscous damper, U.S. Patent (4200003), (1980).
39 T. Kogure, Damper device for a motor, U.S. Patent (5081882), (1992).
40 G. Zhou and L. Sun, Smart Mater. Struct. 17, 055023 (2008).   DOI
41 C. Liu, X. Jing, S. Daley, and F. Li, Mech. Syst. Signal Process. 56, 55 (2015).
42 K. Nakatsuka, H. Yokoyama, J. Shimoiizaka, and T. Funaki, J. Magn. Magn. Mater. 65, 359 (1987).   DOI
43 H. Fukuda, K. Ueno, S. Kamiyama, and T. Oyama, JSME Int. J. Ser. B 41, 822 (1998).
44 S. Kamiyama, Int. J. Mod. Phys. B 13, 2213 (1999).   DOI
45 S. Kamiyama, K. Okamoto, and T. Oyama, Energy Convers. Manage. 43, 281 (2002).   DOI
46 R. Moskowitz, P. Stahl, and W. R. Reed, Inertia damper using ferrofluid, U.S. Patent (4123675), (1978).
47 R. Olaru, A. Salceanu, D. Calarasu, and C. Cotae, Sens. Actuators: A 81, 290 (2000).   DOI
48 C. Petrescu and R. Olaru, IEEE International Symposium on Advanced Topics in Electrical Engineering, 374 (2015).
49 J. Liu, J. Tribology 131, 021801 (2009).   DOI
50 B. M. Berkovsky and V. Bashtovoy, Magnetic fluids and applications handbook, Begell house, New York (1996).
51 M. S. Krakov, J. Magn. Magn. Mater. 201, 368 (1999).   DOI
52 V. Bashtovoi, D. Kabachnikov, A. Reks, L. Suloeva, G. Bossis, and O. Volkova, Magnetohydrodynamics 36, 190 (2000).   DOI
53 V. G. Bashtovoi, D. N. Kabachnikov, A. Y. Kolobov, V. B. Samoylov, and A. V. Vikoulenkov, J. Magn. Magn. Mater. 252, 312 (2002).   DOI
54 J. Yao, J. Chang, D. Li, and X. Yang, J. Magn. Magn. Mater. 402, 28 (2015).
55 V. Bashtovoi, O. Lavrova, T. Mitkova, V. Polevikov, and L. Tobiska, J. Magn. Magn. Mater. 289, 207 (2005).   DOI
56 V. Bashtovoi, A. Reks, P. Kuzhir, G. Bossis, A. Vikulenkov, A. Moisheev, and N. Markachev, Inertial damper for E.g. satellite antenna, has case with cavity comprising complex including magnetic field source introduced In magnetic fluid, and elastic unit permitting to stabilize complex in defined position of cavity, F.R. Patent (2894004 A1), (2007).
57 W. Yang, D. Li, and Z. Feng, J. Vib. Control 19, 183 (2013).   DOI
58 W. Yang, J. Vib. Control (2015).
59 M. Abe, Y. Fujino, and S. Kimura, 5th Annual International Symposium on Smart Structures and Materials, 620 (1998).
60 Y. Ohira, H. Houda, and T. Sawada, Int. J. Appl. Electromagn. Mech. 13, 71 (2001).
61 S. Horie, M. Shimoda, K. Ohno, J. Nakamura, and T. Sawada, Int. J. Appl. Electromagn. Mech. 25, 139 (2007).
62 K. Ohno, M. Shimoda, and T. Sawada, J. Phys.: Condens. Matter 20, 204146 (2008).   DOI
63 V. G. Bashtovoi, G. Bossis, D. N. Kabachnikov, M. S. Krakov, and O. Volkova, J. Magn. Magn. Mater. 252, 315 (2002).   DOI
64 K. Ohno and T. Sawada, Int. J. Appl. Electromagn. Mech. 33, 1411 (2010).
65 T. Oyamada, H. Masuda, K. Ikari, and T. Sawada, Magnetohydrodynamics 49, 515 (2013).
66 K. Ohno, H. Suzuki, and T. Sawada, J. Magn. Magn. Mater. 323, 1389 (2011).   DOI
67 M. Ohaba, Y. Suzuki, T. Sawada, Y. Z. Liu, M. Takeuchi, and T. Tanahashi, J. Magn. Magn. Mater. 252, 306 (2002).   DOI
68 H. Masuda, T. Oyamada, K. Ikari, and T. Sawada, J. Jpn. Soc. Appl. Electromagn. Mech. 21, 228 (2013).   DOI
69 T. Oyamada, H. Masuda, K. Ikari, and T. Sawada, Int. J. Appl. Electromagn. Mech. 45, 659 (2014).
70 K. Ikari, H. Masuda, T. Oyamada, and T. Sawada, Materials Science Forum 792, 275 (2014).   DOI
71 S. Kondo, K. Ikari, and T. Sawada, Materials Science Forum 856, 21 (2016).   DOI
72 S. F. Alazemi, M. F. Daqaq, S. F. Alazemi, and M. F. Daqaq, ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, V002T07A029 (2013).
73 S. F. Alazemi, A. Bibo, and M. F. Daqaq, ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, V002T07A008 (2014).
74 S. Wang and D. Li, J. Korean Phys. Soc. 67, 818 (2015).   DOI
75 A. Bibo, R. Masana, A. King, G. Li, and M. F. Daqaq, Phys. Lett. A 376, 2163 (2012).   DOI
76 S. H. Chae, S. Ju, Y. Choi, S. Jun, S. M. Park, S. Lee, H. W. Lee, and C. Ji, Journal of Physics: Conference Series, 914 (2013).
77 D. W. Oh, D. Y. Sohn, D. G. Byun, and Y. S. Kim, IEEE International Conference on Electrical Machines and Systems, 2033 (2014).