• Title/Summary/Keyword: Damping Factor

Search Result 493, Processing Time 0.026 seconds

Inelastic Displacement Ratio for SDOF Bilinear and Damping Systems (이선형 단자유도 감쇠시스템의 비탄성변위비)

  • Han, Sang-Whan;Bae, Mun-Su;Cho, Jong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.53-61
    • /
    • 2007
  • This study investigates the effect of site class, post-yield stiffness ratio, damping ratio, yield-strength reduction factor, and natural period on inelastic displacement ratio of bilinear SDF systems located at the sites classified as NEHRP site class B,C,D. The previous studies developed inelastic displacement ratio using equal displacement rule in the intermediate and long period range. But, this approximation overestimates the inelastic displacement ratio. Furthermore, inelastic displacement ratio has not been developed for the systems having a damping ratio less than 5%. This study conducts nonlinear regression analysis for proposing equations for calculating median and deviation of the inelastic displacement ratio of the bilinear SDOF system having damping ratios ranging from 0 to 20%. Using median and deviation of the inelastic displacement ratio, probabilistic inelastic displacement ratio is estimated, which can be used for performance-based seismic evaluation.

Interaction Analysis between Waves and Caissons by Damping Zone Effect for Installing New Caisson on Old Caisson Breakwater (기존 케이슨방파제에 신규 케이슨 추가설치 시 댐핑존 영향에 따른 유체와 케이슨들간의 상호작용 평가)

  • Park, Min Su;Kim, Young Taek;Park, Sangki;Min, Jiyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.5
    • /
    • pp.156-168
    • /
    • 2022
  • The design and construction are carried out to improve the structural stability of caisson breakwaters by installing new caissons on the front or rear of old caissons. The wave forces acting on caisson are excessively calculated by the resonance of fluid existing between the old caisson and the new caisson in the numerical analysis using potential flow. In this study, we used the damping zone option in ANSYS AQWA program to analyze the wave forces acting on individual caissons according to the interaction effects between the incident wave and the caisson. By applying the damping zone option to the fluid in which resonance occurs, the wave forces acting on individual caissons were calculated by the change of damping factor. In addition, the wave force characteristics acting on individual caissons were analyzed for the different distances between caissons in the frequency domain analysis.

Calibration of the Broadband Sensor(STS-2) using the Step Method (스텝방법을 이용한 광대역지진계 센서(STS-2)의 검증)

  • 류용규;이덕기;이전희;오석훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.11-18
    • /
    • 2001
  • A close examination of the step calibrations for STS-2 seismometers installed by KMA has been done to deduce the response parameters of those instrument including angular corner frequency, damping factor and coil constant factor. A non-linear least square inversion method has been apple iud to estimate these parameters. The estimated parameters coincide with the manufactory specification with less than 1% error. This method will be extended near- future to deduce the response parameters for SS-1 short period seismometer.

  • PDF

A stability factor for structure-dependent time integration methods

  • Shuenn-Yih Chang;Chiu-Li Huang
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.363-373
    • /
    • 2023
  • Since the first family of structure-dependent methods can simultaneously integrate unconditional stability and explicit formulation in addition to second order accuracy, it is very computationally efficient for solving inertial problems except for adopting auto time-stepping techniques due to no nonlinear iterations. However, an unusual stability property is first found herein since its unconditional stability interval is drastically different for zero and nonzero damping. In fact, instability might occur for solving a damped stiffness hardening system while an accurate result can be obtained for the corresponding undamped stiffness hardening system. A technique of using a stability factor is applied to overcome this difficulty. It can be applied to magnify an unconditional stability interval. After introducing this stability factor, the formulation of this family of structure-dependent methods is changed accordingly and thus its numerical properties must be re-evaluated. In summary, a large stability factor can result in a large unconditional stability interval but also lead to a large relative period error. As a consequence, a stability factor must be appropriately chosen to have a desired unconditional stability interval in addition to an acceptable period distortion.

Soil Dynamics for Vibrating Machine Foundation (기계기초의 지반동력학적 해석)

  • 전준수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.3-25
    • /
    • 2003
  • In this presentation, soil dynamics for vibrating machine foundation is briefly stated, and the result of a model pile test is presented. Analystical methods used in solving for the stiffness and damping factor for pile-soil system are also treated and the results of the test and the calculated values are compared.

  • PDF

Discrete-Time Sliding Mode Controller Design for Scanner system (Scanner System을 위한 Discrete-Time Sliding Mode Controller 설계)

  • 이충우;정정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.172-172
    • /
    • 2000
  • In this paper, we propose a new discrete-time sliding mode controller for reference tracking. Stability of tracking error is analyzed. Design method of sliding surface for tracking control is proposed. Simulation and experimental results are included to show the effectiveness of the proposed method.

  • PDF

Study of damping material characteristics (제진재 물성치 산출법 및 모델링기법 연구)

  • 서정범;윤희옥;김태정
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.32-36
    • /
    • 1994
  • 본 연구에서는 제진재의 최적화를 수행하기 위한 선행 단계로써 제진재 모델링에 필요한 제진재 물성치 산출법과 모델링 기법을 확립하였다. 1. 제진재 물성치(Loss factor ; .eta., Young's Modulus; E) 산출이론. 2. 실험을 통한 제진재 물성치 산출. 3. 제진재 모델링 방법 및 실험과의 비교.

  • PDF

An Inner Region Velocity-Profile Formula of Turbulent Flows on Smooth Bed (매끄러운 하상위 난류의 내부 영역 유속 분포 공식)

  • Yu Kwon-Kyu;Yoon Byung-Man
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.9 s.170
    • /
    • pp.737-744
    • /
    • 2006
  • The velocity of the inner region of turbulent flow on a smooth bed has complex profile which can not be described with a simple formula. Though there have been a couple of formulas describing the profile, most of them have very complex forms, i.e., with many terms, with integration form, or with implicit forms. It means that it is hard to use them or it is difficult to estimate their parameters. A new single formula that describes the velocity profile of the inner region of the turbulent flow on a smooth bed was proposed. This formula has a form of the traditional log-law multiplied by a damping function. Introducing only one additional parameter, it can describe the whole inner range nicely. It approximates the law-of-the-wall in the vicinity of the bed and approaches to the log-law in the overlap region. The added parameter, damping factor, can be estimated very easily. It is not sensitive to the Reynolds number change and the velocity profile calculated by the formula does not change much due to the change of the parameter.