DOI QR코드

DOI QR Code

Interaction Analysis between Waves and Caissons by Damping Zone Effect for Installing New Caisson on Old Caisson Breakwater

기존 케이슨방파제에 신규 케이슨 추가설치 시 댐핑존 영향에 따른 유체와 케이슨들간의 상호작용 평가

  • Park, Min Su (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Young Taek (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Park, Sangki (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Min, Jiyoung (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 박민수 (한국건설기술연구원 구조연구본부) ;
  • 김영택 (한국건설기술연구원 수자원하천연구본부) ;
  • 박상기 (한국건설기술연구원 구조연구본부) ;
  • 민지영 (한국건설기술연구원 구조연구본부)
  • Received : 2022.09.28
  • Accepted : 2022.10.24
  • Published : 2022.10.31

Abstract

The design and construction are carried out to improve the structural stability of caisson breakwaters by installing new caissons on the front or rear of old caissons. The wave forces acting on caisson are excessively calculated by the resonance of fluid existing between the old caisson and the new caisson in the numerical analysis using potential flow. In this study, we used the damping zone option in ANSYS AQWA program to analyze the wave forces acting on individual caissons according to the interaction effects between the incident wave and the caisson. By applying the damping zone option to the fluid in which resonance occurs, the wave forces acting on individual caissons were calculated by the change of damping factor. In addition, the wave force characteristics acting on individual caissons were analyzed for the different distances between caissons in the frequency domain analysis.

기존 케이슨방파제의 전면 또는 후면에 추가로 케이슨을 설치하여 구조물의 안정성을 향상시키기 위한 설계 및 시공사례가 수행되고 있다. 기존 케이슨과 신규 케이슨사이에 존재하는 유체의 공진으로 구조물에 작용하는 파력이 과도하게 해석되는 현상이 포텐셜이론 기반의 수치해석에서 발생된다. 본 연구에서는 상용 프로그램인 ANSYS AQWA에서 제공되는 댐핑존 옵션을 이용하여 입사하는 파랑과 케이슨들간의 상호작용 영향에 의해 개별 케이슨에 작용하는 파력 분포 특성을 분석하였다. 공진이 발생되는 유체에 댐핑존을 적용하여 댐핑계수 변화에 따른 케이슨에 작용하는 파력을 도출하였다. 또한 전후 케이슨간의 간격 및 좌우 케이슨간의 간격 변화에 따른 개별 케이슨에 작용하는 파력 특성을 주파수영역 수치해석을 통해 검토하였다.

Keywords

Acknowledgement

본 연구는 해양수산과학기술진흥원의 안전한 항만 구축 및 관리기술개발사업인 "재해안전항만구축기술개발(20180323)" 과제 및 ICT 기반 항만 인프라 스마트 재해 대응 기술개발사업인 "항만 인프라 재해 및 노후화 대응 스마트 유지보수 기술개발(20210659)" 과제를 통해 수행된 연구결과 중 일부임을 밝히며, 연구비 지원에 감사드립니다.

References

  1. Bunnik, T., Pauw, W. and Voogt, A. (2009). Hydrodynamic Analysis for Side by Side Offloading, In 19th International Offshore and Polar Engineering Conference, Osaka, Japan.
  2. Cheetham, P., Du, S., May, R. and Smith, S. (2007). Hydrodynamic analysis of ships side by side in waves. International Aerospace CFD Conference, Paris, France.
  3. Chen, X.B. (2005). Hydrodynamic Analysis for Offshore LNG Terminals, Proceeding of the 2nd International Workshop on Applied Offshore Hydrodynamics, Rio De Janeiro, Brazil.
  4. Chen, M., Guo, H., Wang, R., Tao, R. and Cheng, N. (2021). Effect of gap resonance on the hydrodynamics and dynamics of a multi-module floating system with narrow gaps. Journal of Marine Science and Engineering, 9(11), 1-29. https://doi.org/10.3126/jsce.v9i9.46289
  5. Cho, I.H. (2003). Wave control by an array of N bottom mounted porous cylinders. Journal of Korean Society of Coastal and Ocean Engineers, 15(4), 232-241 (in Korean).
  6. Cho, I.H. (2004). Wave Control by an array of porous dual cylindrical structures. Journal of Ocean Engineering and Technology, 18(5), 7-14 (in Korean).
  7. Fournier, J.R., Naciri, M. and Chen, X.B. (2006). Hydrodynamics of Two Side by Side Vessels Experiments and Numerical Simulations, In 16th International Offshore and Polar Engineering Conference, San Francisco, California, USA.
  8. Pauw, W.H., Huijsmans, R.H.M. and Voogt, A. (2007). Advances in the Hydrodynamics of Side by Side Moored Vessels, In 26th International Conference on Offshore Mechanics and Arctic Engineering, San Diego, California, USA, 597-603.
  9. Park, M.S. (2019). Characteristics of wave forces by installation of new circular caisson on the back of old circular caisson. Journal of Korean Society of Coastal and Ocean Engineers, 31(6), 395-402 (in Korean). https://doi.org/10.9765/KSCOE.2019.31.6.395
  10. Park, M.S. (2020). Wave structure interaction by installation of new circular caissons on old circular caisson breakwater. Journal of Korean Society of Coastal and Ocean Engineers, 32(5), 307-321 (in Korean). https://doi.org/10.9765/KSCOE.2020.32.5.307
  11. Park, M.S. (2020). Characteristics of wave on circular breakwater of double array by various porous coefficients among circular caissons. Journal of Korean Society of Coastal and Ocean Engineers, 32(6), 420-433 (in Korean). https://doi.org/10.9765/KSCOE.2020.32.6.420
  12. Park, M.S. (2021). Interaction effect between caissons by installation of new caisson on existing caisson breakwater in second order stokes wave condition. Journal of Korean Society of Coastal and Ocean Engineers, 33(6), 345-356 (in Korean). https://doi.org/10.9765/KSCOE.2021.33.6.345
  13. Park, M.S., Koo, W.C. and Choi, Y.R. (2010). Hydrodynamic interaction with an array of porous circular cylinders. International Journal of Naval Architecture and Ocean Engineering, 2, 146-154. https://doi.org/10.2478/IJNAOE-2013-0031
  14. Sankarbabu, K., Sannasiraj, S.A. and Sundar, V. (2007). Interaction of regular waves with a group of dual porous circular cylinders. Applied Ocean Research, 29, 180-190. https://doi.org/10.1016/j.apor.2008.01.004
  15. Sankarbabu, K., Sannasiraj, S.A. and Sundar, V. (2008). Hydrodynamic performance of a dual cylindrical caisson breakwater. Coastal Engineering, 55, 431-446. https://doi.org/10.1016/j.coastaleng.2007.12.007
  16. Ganesan T, S. and Sen, D. (2016). Time domain simulation of side by side floating bodies using A 3D numerical wave tank approach. Applied Ocean Research, 58, 189-217. https://doi.org/10.1016/j.apor.2016.03.014
  17. Wang, K.H. and Ren, X. (1994). Wave interaction with a concentric porous cylinder system. Ocean Engineering, 21(4), 343-360. https://doi.org/10.1016/0029-8018(94)90009-4
  18. Watai, R., Dinoi, P., Ruggeri, F., Souto-Iglesias. and Simos, A. (2015). Rankine time domain method with application to side by side gap flow modeling. Applied Ocean Research, 50, 69-90. https://doi.org/10.1016/j.apor.2014.12.002
  19. Williams, A.N. and Li, W. (2000). Water wave interaction with an array of bottom-mounted surface-piercing porous cylinders. Ocean Engineering, 27, 840-866.