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Quality factor estimation model

for imperfect circular ring with thermoelastic damping
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1. Introduction

Circular ring has been studied by numerous
the
engineering fields such as rotating components,
vibratory gyros, and etc. Especially, thermoelastic
damping and various types of imperfections on
the studied for the
performance of ring resonator gyros. A relatively

researchers for various applications in

ring are estimating
simple analysis can be performed by considering
energy relations of the structure. As Z. F. hisaeva
and M. Ostoja-Starzewsi[1] carried out specific
study for thermoelastic damping on ring resonator
gyro. Moreover, S. J Wong et. al. [2] presented
analytical model for the gyro with thermoelastic
damping estimating its performance. Further, the
effects of imperfections on circular ring has
analyzed by C.H.J. Fox[3] and Rouke et al. [4].
They split due to
imperfections of the ring and presented trimming

investigated frequency
theory based on their model. In this paper, the
the presented
considering combined effects due to thermoelastic
damping and imperfections.

natural frequency of ring is

2. Formulations

In this section, mathematical model of effects of
point masses on the ring is formulated. Also,
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thermoelastic damping is considered by applying
heat conduction equations and thermal
terms

strain
The
natural frequency of the system is determined by

into energy relations. Eventually,
using Rayleigh’ s energy method for bending
mode of vibration.

First of all, the stress—strain relationship can
be expressed as
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where E, 4 and « denote Young' s modulus,

Poission’ s ratio and curvature of the middle
surface of the structure, respectively.
The energy relations can be written as
K, =K,+K,,

U,=U,+U, @

where K and U denote kinetic and potential
energy, and subscripts T, 0, M and D represent
total energy, energy of perfect structure, energy
of imperfection, and energy from thermal effects,
respectively. Note that as the imperfection energy
is only considered in kinetic energy relation and
effect is in potential energy. The
maximum energy terms for Ky, Uy and Ky can be

as thermal

obtained directly by applying inextensional mode
shape functions. The results are presented as
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where subscript idenotes the j—th point mass

in total point masses.



denotes the number of point masses.
Then, the heat
introduced for obtaining remaining energy term.
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conduction equation is
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Eq. (5) can be solved by applying linearization
and iterations as stated in Ref. [2]. The solution
of Eq. (5) can be expressed as
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Using Eq. (7), the potential energy term
representing thermal strain can be determined
and then, the natural frequency of the ring can
be determined by applying Rayleigh’ s energy
method as
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where the complex function f(w) is
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3. Results and discussions

The results are presented by Q-factor diagram
for varying diameter and thickness of the ring for
L-mode frequency. The diagram shows Q-factor
difference compared to original Q-factor from
perfect ring structure.

Fig. 1 Q-factor difference for L-mode

Fig. 1 shows Q-factor difference for L-mode

which has greater difference than H-mode Q-
factor. The region with higher value than rest
of the area means greater influence of mass

imperfection occurs within the region.

Fig. 2 Magnitude difference of free vibration

Further, Fig. 2 presents magnitude difference
between perfect and imperfect ring, and the
implies that the
faster energy dissipation.

results imperfect ring has

4. Conclusions

The mathematical model for estimating Q-factor
considering imperfect circular ring is presented in
the study. The study reveals that the mass
imperfection can affect to Q-factor which means
mass Iimbalance is inducing increased energy
dissipation. Also, Q-factor decreased greatly
when the mass of imperfection becomes larger, or
the number imperfect mass increases.
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