• 제목/요약/키워드: Damping Error

검색결과 201건 처리시간 0.021초

모드 댐핑 행렬의 대각선 성분 우세가 비연관화 근사에 미치는 영향 (Influence of the Diagonal Dominance of Modal Damping Matrix on the Decoupling Approximation)

  • 김정수;최기흥;최기상
    • 대한기계학회논문집
    • /
    • 제17권8호
    • /
    • pp.1963-1970
    • /
    • 1993
  • A simple technique to decouple the modal equations of motion of a linear nonclassically damped system is to neglect the off-diagonal elements of the modal damping matrix. This is called the decoupling approximation. It has generally been conceived that smallness of off-diagonal elements relative to the diagonal ones would validate its use. In this study, the relationship between elements of the modal damping matrix and the error arising from the decoupling approximation is explored. It is shown that the enhanced diagonal dominance of the modal damping matrix need not diminish the error. In fact, the error may even increase. Moreover, the error is found to be strongly dependent on the exitation. Therefore, within the practical range of engineering applications, diagonal dominance of the modal damping matrix would not be sufficient to supress the effect of modal coupling.

가변 감쇠 파라미터를 이용한 Levenberg-Marquardt 알고리즘의 학습 속도 향상 (Accelerating Levenberg-Marquardt Algorithm using Variable Damping Parameter)

  • 곽영태
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권4호
    • /
    • pp.57-63
    • /
    • 2010
  • Levenberg-Marquardt 알고리즘에서 감쇠 파라미터는 오류역전파 학습과 Gauss-Newton 학습의 스위치 역할을 하며 학습 속도에 영향을 준다. 이런 감쇠 파라미터를 고정시키는 것은 오차 함수의 진동을 유발하고 학습 속도를 감소시킨다. 따라서 본 논문은 오차 함수의 변화 과정을 참조하여 감쇠 파라미터를 가변적으로 적용하는 방법을 제안한다. 제안된 방법은 오차의 변화량이 크면 감쇠 파라미터를 크게, 오차의 변화량이 작으면 감쇠 파라미터를 작게 조정한다. 이것은 모멘텀과 유사한 역할을 하여 학습 속도를 향상시킨다. 제안된 방법의 검증을 위한 실험으로는 iris 분류 문제와 wine 분류 문제를 사용하였다. 제안된 방법은 iris 분류 문제에서는 67% 학습에서, wine 분류 문제에서는 78% 학습에서 학습 속도가 향상되었으며 기존 방법과 비교하여 오차의 진동도 적은 것을 확인할 수 있었다.

INS/GPS Integrated Smoothing Algorithm for Synthetic Aperture Radar Motion Compensation Using an Extended Kalman Filter with a Position Damping Loop

  • Song, Jin Woo;Park, Chan Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.118-128
    • /
    • 2017
  • In this study, we propose a real time inertial navigation system/global positioning system (INS/GPS) integrated smoothing algorithm based on an extended Kalman filter (EKF) and a position damping loop (PDL) for synthetic aperture radar (SAR). Integrated navigation algorithms usually induce discontinuities due to error correction update by the Kalman filter, which are as detrimental to the performance of SAR as the relative position error. The proposed smoothing algorithm suppresses these discontinuities and also reduces the relative position error in real time. An EKF estimates the navigation errors and sensor biases, and all the errors except for the position error are corrected directly and instantly. A PDL activated during SAR operation period imposes damping effects on the position error estimates, where the estimated position error is corrected smoothly and gradually, which contributes to the real time smoothing and small relative position errors. The residual errors are re-estimated by the EKF to maintain the estimation performance and the stability of the overall loop. The performance improvements were confirmed by Monte Carlo simulations. The simulation results showed that the discontinuities were reduced by 99.8% and the relative position error by 48% compared with a conventional EKF without a smoothing loop, thereby satisfying the basic performance requirements for SAR operation. The proposed algorithm may be applicable to low cost SAR systems which use a conventional INS/GPS without changing their hardware configurations.

보완 필터의 상태 공간 표현식 유도 및 GPS/INS 수직채널 감쇄 루프 설계 (State-Space Representation of Complementary Filter and Design of GPS/INS Vertical Channel Damping Loop)

  • 박해리
    • 제어로봇시스템학회논문지
    • /
    • 제14권8호
    • /
    • pp.727-732
    • /
    • 2008
  • In this paper, the state-space representation of generalized complimentary filter is proposed. Complementary filter has the suitable structure to merge information from sensors whose frequency regions are complementary. First, the basic concept and structure of complementary filter is introduced. And then the structure of the generalized filter and its state-space representation are proposed. The state-space representation of complementary filter is able to design the complementary filter by applying modern filtering techniques like Kalman filter and $H_{\infty}$ filter. To show the usability of the proposed state-space representation, the design of Inertial Navigation System(INS) vertical channel damping loop using Global Positioning System(GPS) is described. The proposed GPS/INS damping loop lends the structure of Baro/INS(Barometer/INS) vertical channel damping loop that is an application of complementary filter. GPS altitude error has the non-stationary statistics although GPS offers navigation information which is insensitive to time and place. Therefore, $H_{\infty}$ filtering technique is selected for adding robustness to the loop. First, the state-space representation of GPS/INS damping loop is acquired. And next the weighted $H_{\infty}$ norm proposed in order to suitably consider characteristics of sensor errors is used for getting filter gains. Simulation results show that the proposed filter provides better performance than the conventional vertical channel loop design schemes even when error statistics are unknown.

정상파 문제의 방사조건에 관한 연구 (A Study on the Numerical Radiation Condition in the Steady Wave Problem)

  • 이광호;전호환;성창경
    • 한국해양공학회지
    • /
    • 제12권2호통권28호
    • /
    • pp.97-110
    • /
    • 1998
  • The numerical damping and dispersion error characteristics associated with difference schemes and a panel shift method used for the calculation of steady free surface flows by a panel method are an analysed in this paper. First, 12 finite difference operators used for the double model flow by Letcher are applied to a two dimensional cylinder with the Kelvin free surface condition and the numerical errors with these schemes are compared with those by the panel shift method. Then, 3-D waves due to a submerged source are calculated by the difference schemes, the panel shift method and also by a higher order boundary element method(HOBEM). Finally, the waves and wave resistance for Wigley's hull are calculated with these three schemes. It is shown that the panel shift method is free of numerical damping and dispersion error and performs better than the difference schemes. However, it can be concluded that the HOBEM also free of the numerical damping and dispersion error is the most stable, accurate and efficient.

  • PDF

구조물 손상탐지 및 감쇄평가를 위한 시간 영역에서의 SI 기법 (An SI Scheme for the Assessment of Structural Damage and Damping)

  • 이해성;강주성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.430-433
    • /
    • 2003
  • This paper presents a system identification (SI) scheme in time domain using measured acceleration data. The error function is defined as the time integral of the least square errors between the measured acceleration and the calculated acceleration by a mathematical model. Damping parameters as well as stiffness properties of a structure are considered as system parameters. The structural damping is modeled by the Rayleigh damping in SI. The regularization technique is applied to alleviate the ill-posed characteristics of inverse problems. The validity of the proposed method is demonstrated by an experimental study on a shear building model.

  • PDF

Comparative analysis of damping ratio determination methods based on dynamic triaxial tests

  • Song Dongsong;Liu Hongshuai
    • Earthquakes and Structures
    • /
    • 제25권4호
    • /
    • pp.249-267
    • /
    • 2023
  • Various methods for determining the damping ratio have been proposed by scholars both domestically and abroad. However, no comparative analysis of different determination methods has been seen yet. In this study, typical sand (Fujian standard sand) and cohesive soils were selected as experimental objects, and undrained strain-controlled dynamic triaxial tests were conducted. The differences between existing damping ratio determination methods were theoretically compared and analyzed. The results showed that the hysteresis curve of cohesive soils had better symmetry and more closely conformed to the definition of equivalent linear viscoelasticity. For non-cohesive soils, the differences in damping ratio determined by six methods were significant. The differences decreased with increasing confining pressure and relative density, but increased gradually with increasing shear strain, especially at high shear strains, where the maximum relative error reached 200%. For cohesive soils, the differences in damping ratio determined by six methods were relatively small, with a maximum relative error of about 50%. Moreover, they were less affected by effective confining pressure and had the same changing trend under different effective confining pressures. The damping ratio determination method has a large effect on the seismic response of soils distributed by non-cohesive soils, with a maximum relative error of about 15% for the PGA and up to about 30% for the Sa. However, for soil layers distributed by cohesive soils, the damping ratio determination method has less influence on the seismic response. Therefore, it is necessary to adopt a unified damping ratio determination method for non-cohesive soils, which can effectively avoid artificial errors caused by different determination methods.

위상 최적화를 이용한 능동 감쇠층의 설계 (Design of an Active Damping Layer Using Topology Optimization)

  • 김태우;김지환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.660-664
    • /
    • 2003
  • The optimal thickness distribution of an active damping layer is sought so that it satisfies a certain constraint on the dynamic performance of a system minimizing control efforts. To obtain a topologically optimized configuration, which includes size and shape optimization, thickness of the active damping layer is interpolated using linear functions. With the control energy as the objective function to be minimized, the state error energy is introduced as the dynamic performance criterion for the system and used lot a constraint. The optimal control gains are evaluated from LQR simultaneously as the optimization of the layer position proceeds. From numerical simulation, the topologically optimized distribution of the active damping layer shows the same dynamic performance and cost as the Idly covered counterpart, which is optimized only in terms of control gains, with less amount of the layer.

  • PDF

On the Error Bound of the Approximate Solution of a Nonclassically Damped Linear System under Periodic Excitations

  • Hwang, Jai-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • 제15권4E호
    • /
    • pp.45-52
    • /
    • 1996
  • One common procedure in the approximate solution of a nonclassically damped linear system is to neglect the off-diagonal elements of the normalized damping matrix. A tight error bound, which can be computed with relative ease, is given for this method of solution. The role that modal coupling plays in the control of error is clarified. If the normalized damping matrix is strongly diagonally dominant, it is shown that adequate frequency separation is not necessary to ensure small errors.

  • PDF

Basic Study of the Optimization of the Gain Parameters α, β and γ of a Tracking Module for ARPA system on Board High Dynamic Warships

  • Pan, Bao-Feng;Njonjo, Anne Wanjiru;Jeong, Tae-Gweon
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2016년도 춘계학술대회
    • /
    • pp.305-307
    • /
    • 2016
  • The purpose of this paper is to determine the optimal values of the gain parameters used in the tracking module for a highly dynamic warship. The algorithm of the tracking module uses the ${\alpha}-{\beta}-{\gamma}$ filter to compute accurate estimates and update the state variables, that is, positions, velocity and acceleration. The filtering coefficients ${\alpha}$, ${\beta}$ and ${\gamma}$ are determined from set values of the damping parameter, ${\xi}$. Optimization is achieved by plotting a range of the damping parameter ${\xi}$ against the corresponding residual error and then selecting the best value of ${\xi}$ with the minimum residual error. Optimal values of the smoothing coefficients are subsequently computed from the selected damping parameter, ${\xi}$.

  • PDF