• 제목/요약/키워드: Damper displacement

검색결과 349건 처리시간 0.028초

하이브리드 면진장치의 뉴로-퍼지 모형화 (Neuro-Fuzzy Modeling Approach for Hybrid Base Isolaton System)

  • 김현수;;이동근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.201-208
    • /
    • 2005
  • Neuro-Fuzzy modeling approach is proposed to predict the dynamic behavior of a single-degree-of-freedom structure that is equipped with hybrid base isolation system. Hybrid base isolation system consists of friction pendulum systems (FPS) and a magnetorheological (MR) damper. Fuzzy model of the M damper is trained by ANFIS using various displacement, velocity, and voltage combinations that are obtained from a series of performance tests. Modelling of the FPS is carried out with a nonlinear analytical equation that is derived in this study and neuro-fuzzy training. Fuzzy logic controller is employed to control the command voltage that is sent to MR damper. The dynamic responses or experimental structure subjected to various earthquake excitations are compared with numerically simulated results using neuro-fuzzy modeling method. Numerical simulation using neuro-fuzzy models of the MR damper and FPS predict response of the hybrid base isolation system very well.

  • PDF

사장 케이블 제진을 위한 고성능 감쇠 장치 (High-Performance Damping Device for Suppressing Vibration of Stay Cable)

  • 정형조;박철민;장지은;박규식;이인원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.489-496
    • /
    • 2005
  • In this paper, the feasibility of the high-performance damping device vibration suppression of stay cables has been investigated. The proposed damping system consists of a linear viscous damper and a scissor-jack-type toggle linkage. Since the mechanism of the scissor-jack-type toggle linkage amplifies the relative displacement of the linear viscous damper, it is expected that the capacity of the viscous damper used in the scissor-jack-damper energy dissipation system can be reduced without the loss of the control performance. Numerical simulation results demonstrate the efficacy of the damping system employing the scissor-jack-type toggle linkage. Therefore, the proposed damping system could be considered as one of the promising candidates for suppressing vibration of stay cable.

  • PDF

Experimental investigation on hysteretic behavior of rotational friction dampers with new friction materials

  • Anoushehei, Majid;Daneshjoo, Farhad;Mahboubi, Shima;Khazaeli, Sajjad
    • Steel and Composite Structures
    • /
    • 제24권2호
    • /
    • pp.239-248
    • /
    • 2017
  • Friction dampers are displacement dependent energy dissipation devices which dissipate earthquake energy through friction mechanism and widely used in improving the seismic behavior of new structures and rehabilitation of existing structures. In this paper, the cyclic behavior of a friction damper with different friction materials is investigated through experimental tests under cyclic loading. The damper is made of steel plates, friction pads, preloaded bolts and hard washers. The paper aims at investigating the hysteretic behavior of three friction materials under cyclic loading to be utilized in friction damper. The tested friction materials are: powder lining, super lining and metal lining. The experimental results are studied according to FEMA-356 acceptance criteria and the most appropriate friction material is selected by comparing all friction materials results.

반능동 점성감쇠를 이용한 유체댐퍼 개발에 관한 연구 (A Study on the Development of a Hydraulic Damper using Semi-Active Viscous Damping)

  • 전종균;김현식
    • 한국산학기술학회논문지
    • /
    • 제1권2호
    • /
    • pp.15-20
    • /
    • 2000
  • 본 논문에서는 교량 밑 건축구조물, 각종 기계부품의 진동문제를 보완하기 위한 방법으로서 MR유체를 이용한 댐퍼를 연구하였다. MR 유체의 특성을 이용한 댐퍼를 모델링하여, 설계도면을 기초로 MR 댐퍼를 제작하였다. 만능재료 시험기를 이용하여 주파수와 전류 및 변위를 단계적으로 변화시켜가며 성능실험을 반복적으로 수행하였다. 실험을 통하여 주파수, 전류 및 변위에 따라 댐핑 효과가 다르게 나타남을 확인할 수 있었다.

  • PDF

A Study on The Vibration Attenuation of a Driver Seat Using an MR fluid Damper

  • Park, Chan-Ho;Ahn, Byeong-Il;Jeon, Do-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.111.6-111
    • /
    • 2001
  • A seat suspension system with a controlled MR(Magneto Rheological) fluid damper is introduced to improve the ride quality and prevent the health risk of a driver compared to conventional seats. The system locates between a seat cushion and base, and is composed of a spring, MR fluid damper and controller. The MR fluid damper designed in valve mode is capable of producing a wide range of damping force according to applied currents. In experiments, a person was sitting on the controlled seat excited by a hydraulic system. The skyhook control, continuous skyhook control and relative displacement control were applied and the continuous skyhook control improved the vibration suppression by 36.6%.

  • PDF

준능동 아웃리거 댐퍼시스템의 진동제어 성능평가 (Vibration Control Performance Evaluation of Semi-active Outrigger Damper System)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제15권4호
    • /
    • pp.81-89
    • /
    • 2015
  • Damped outrigger systems have been proposed as a novel energy dissipation system to protect tall buildings from severe earthquakes and strong wind loads. In this study, semi-active damping devices such as magnetorheological (MR) dampers instead of passive dampers are installed vertically between the outrigger and perimeter columns to achieve large and adaptable energy dissipation. Control performance of semi-active outrigger damper system mainly depends on the control algorithm. Fuzzy logic control algorithm was used to generate command voltage sent to MR damper. Genetic algorithm was used to optimize the fuzzy logic controller. An artificial earthquake load was generated for numerical simulation. A simplified numerical model of damped outrigger system was developed. Based on numerical analyses, it has been shown that the semi-active damped outrigger system can effectively reduce both displacement and acceleration responses of the tall building in comparison with a passive outrigger damper system.

타이어 압력 변화에 따른 1/4 MR 댐퍼 차량의 승차감 고찰 (Ride Comfort Investigation of 1/4 MR Damper Vehicle under Different Tire Pressure)

  • 맹영준;성민상;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.343-348
    • /
    • 2011
  • This paper presents ride comfort characteristics of a quarter-vehicle magneto-rheological (MR) suspension system with respect to different tire pressure. As a first step, controllable MR damper is designed and modeled based on both the optimized damping force levels and mechanical dimensions required for a commercial full-size passenger vehicle. Then, a quarter-vehicle suspension system consisting of sprung mass, spring, tire and the MR damper is constructed. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, vertical tire stiffness with respect to different tire pressure is experimentally identified. The skyhook controller is then implemented for the realization of the quarter-vehicle MR suspension system. Finally, the ride comfort analysis with respect to different tire pressure is undertaken in time domain. In addition, a comparative result between controlled and uncontrolled is provided by presenting vertical RMS displacement.

  • PDF

Development of a full-scale magnetorheological damper model for open-loop cable vibration control

  • Zhang, Ru;Ni, Yi-Qing;Duan, Yuanfeng;Ko, Jan-Ming
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.553-564
    • /
    • 2019
  • Modeling of magnetorheological (MR) dampers for cable vibration control to facilitate the design of even more effective and economical systems is still a challenging task. In this study, a parameter-adaptive three-element model is first established for a full-scale MR damper based on laboratory tests. The parameters of the model are represented by a set of empirical formulae in terms of displacement amplitude, voltage input, and excitation frequency. The model is then incorporated into the governing equation of cable-damper system for investigation of open-loop vibration control of stay cables in a cable-stayed bridge. The concept of optimal voltage/current input achieving the maximum damping for the system is put forward and verified. Multi-mode suboptimal and Single-mode optimal open-loop control method is then developed. Important conclusions are drawn on application issues and unique characteristics of open-loop cable vibration control using MR dampers.

Optimization of base-isolated structure with negative stiffness tuned inerter damper targeting seismic response reduction

  • Jean Paul Irakoze;Shujin Li;Wuchuan Pu;Patrice Nyangi;Amedee Sibomana
    • Earthquakes and Structures
    • /
    • 제25권6호
    • /
    • pp.399-415
    • /
    • 2023
  • In this study, we investigate the use of a negative stiffness tuned inerter damper system to improve the performance of a base-isolated structure. The negative stiffness tuned inerter damper system consists of a tuned inerter damper connected in parallel with a negative stiffness element. To find the optimal parameters for the base-isolated structure with negative stiffness tuned inerter damper system, we develop an optimization method based on performance criteria. The objective of the optimization is to minimize the superstructure acceleration response ratio, while ensuring that the base displacement response ratio remains below a specified target value. We evaluate the proposed method by conducting numerical analyses on an eight-story building. The structure is modeled using both a simplified 3-degree-of-freedom system and a more detailed story-by-story shear-beam model. Lastly, a comparative analysis using time history analysis is performed to compare the performance of the base-isolated structure with negative stiffness tuned inerter damper system with that of the base-isolated structure and base-isolated structure with tuned inerter damper systems. The results obtained from the comparative analysis show that the negative stiffness tuned inerter damper system outperforms the tuned inerter damper system in reducing the dynamic seismic response of the base-isolated structure. Overall, this study demonstrates that the negative stiffness tuned inerter damper system can effectively enhance the performance of base-isolated structures, providing improved seismic response reduction compared to other systems.

Seismic control of concrete buildings with nonlinear behavior, considering soil structure interaction using AMD and TMD

  • Mortezaie, Hamid;Zamanian, Reza
    • Structural Engineering and Mechanics
    • /
    • 제77권6호
    • /
    • pp.721-734
    • /
    • 2021
  • The seismic analysis of structures without applying the effects of soil can undermine functional objectives of structure so that it can affect all the desired purposes at the design and control stages of the structure. In this research, employing OpenSees and MATLAB software simultaneously and developing a definite three-dimensional finite element model of a high-rise concrete structure, designed using performance-based plastic design approach, the performance of Tuned Mass Damper (TMD) and Active Mass Damper (AMD) is both examined and compared. Moreover some less noted aspects such as nonlinear interaction of soil and structure, uplift, nonlinear behavior of structure and structural torsion have received more attention. For this purpose, the analysis of time history on the structural model has been performed under 22 far-field accelerogram records. Examining a full range of all structural seismic responses, including lateral displacement, acceleration, inter-story drift, lost plastic energy, number of plastic hinges, story shear force and uplift. The results indicate that TMD performs better than AMD except for lateral displacement and inter-story drift to control other structural responses. Because on the one hand, nonlinear structural parameters and soil-structure interaction have been added and on the other hand, the restriction on the control force applied that leads up to saturation phenomenon in the active control system affect the performance of AMD. Moreover, the control force applied by structural control system has created undesirable acceleration and shear force in the structure.