• Title/Summary/Keyword: Damage probability

Search Result 591, Processing Time 0.032 seconds

Seismic Fragility Analysis of Substation Systems by Using the Fault Tree Method (고장수목을 이용한 변전소의 지진취약도 분석)

  • Kim, Min-Kyu;Choun, Young-Sun;Choi, In-Kil;Oh, Keum-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.47-58
    • /
    • 2009
  • In this study, a seismic fragility analysis was performed for substation systems in Korea. To evaluate the seismic fragility function of the substation systems, a fragility analysis of the individual equipment and facilities of the substation systems was first performed, and then all systems were considered in the fragility analysis of the substation systems using a fault-tree method. For this research, the status of the substation systems in Korea was investigated for the classification of the substation systems. Following the classification of the substation systems, target equipment was selected based on previous damage records in earthquake hazards. The substation systems were classified as 765kV, 345kV, and 154kV systems. Transformer and bushing were chosen as target equipment. The failure modes and criteria for transformer and bushing were decided, and fragility analysis performed. Finally, the fragility functions of substation system were evaluated using the fault tree method according to damage status.

Simulation of Debris Flow Deposit in Mt. Umyeon

  • Won, Sangyeon;Kim, Gihong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.507-516
    • /
    • 2015
  • Debris flow is a representative natural disaster in Korea and occurs frequently every year. Recently, it has caused considerable damage to property and considerable loss of life in both mountainous and urban regions. Therefore, It is necessary to estimate the scope of damage for a large area in order to predict the debris flow. A response model such as the random walk model(RWM) can be used as a useful tool instead of a physics-based numerical model. RWM is a probability model that simplifies both debris flows and sedimentation characteristics as a factor of slopes for a subjective site and represents a relatively simple calculation method compared to other debris flow behavior calculation models. Although RWM can be used to analyzing and predicting the scope of damage caused by a debris flow, input variables for terrain conditions are yet to be determined. In this study, optimal input variables were estimated using DEM generated from the Aerial Photograph and LiDAR data of Mt. Umyeon, Seoul, where a large-scale debris flow occurred in 2011. Further, the deposition volume resulting from the debris flow was predicted using the input variables for a specific area in which the deposition volume could not be calculated because of work restoration and the passage of time even though a debris flow occurred there. The accuracy of the model was verified by comparing the result of predicting the deposition volume in the debris flow with the result obtained from a debris flow behavior analysis model, Debris 2D.

Assessment of Fragility Curve for Earthquake in Railway Bridge (기존 철도교량의 지진에 대한 취약도 곡선 산정)

  • Kim, Dae-Ho;Sun, Chang-Ho;Kim, Ick-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.101-104
    • /
    • 2008
  • Recently, the serious damage by earthquakes is increased around the world. SOC fo city is established to minimize the loss of lives and assets by earthquakes, which an objective standard is required. Generally, bridges damage by earthquakes occurred the inelastic hinge under the column. Nonlinear element model of inelastic hinge have been used to Bilinear model, but Takeda model for material characterization of concrete is a little. In this study, railway bridge was performed seismic fragility analysis for Takeda model and Bilinear model comparatively. This analysis shows that damage probability of Takeda model is larger than Bilinear model. And analysis of Takeda model in longitudinal direction and transverse direction are different. Therefore developed analysis for concrete column of bridge is expected to apply to material characterization.

  • PDF

A Study on the Damage of Satellite caused by Hypervelocity Impact with Orbital Debris (우주파편 초고속충돌에 의한 위성구조체의 손상에 관한 연구)

  • Kang, Pil-Seong;Im, Chan-Kyung;Youn, Sung-Kie;Lim, Jae-Hyuk;Hwang, Do-Soon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.555-563
    • /
    • 2012
  • In earth orbit, a great number of orbital debris move around in extremely high velocity, and they become serious threats to satellites. In this study, smoothed particle hydrodynamics(SPH) is used to analyze the damage of a low earth orbit satellite due to the hypervelocity impact with orbital debris. The damage of honeycomb sandwich panel(HC/SP) used for walls of a satellite is analyzed with respect to impact velocities. For the additional analysis to examine the safety of interior components of the satellite, an attached electronic box and an offset electronic box are considered. As a result of the analysis considering the orbital debris having a probability of collision more than 2% at altitude of 685km, it is shown that the HC/SP can be perforated but only small craters are formed on both the attached electronic box and the offset electronic box.

Seismic performance assessments of precast energy dissipation shear wall structures under earthquake sequence excitations

  • Zhang, Hao;Li, Chao;Wang, Zhi-Fang;Zhang, Cai-Yan
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.147-162
    • /
    • 2020
  • This paper presents a novel precast energy dissipation shear wall (PEDSW) structure system that using mild steel dampers as dry connectors at the vertical joints to connect adjacent wall panels. Analytical studies are systematically conducted to investigate the seismic performance of the proposed PEDSW under sequence-type ground motions. During earthquake events, earthquake sequences have the potential to cause severe damage to structures and threaten life safety. To date, the damage probability of engineering structures under earthquake sequence has not been included in structural design codes. In this study, numerical simulations on single-story PEDSW are carried out to validate the feasibility and reliability of using mild steel dampers to connect the precast shear walls. The seismic responses of the PEDSW and cast-in-place shear wall (CIPSW) are comparatively studied based on nonlinear time-history analyses, and the effectiveness of the proposed high-rise PEDSW is demonstrated. Next, the foreshock-mainshock-aftershock type earthquake sequences are constructed, and the seismic response and fragility curves of the PEDSW under single mainshock and earthquake sequences are analyzed and compared. Finally, the fragility analysis of PEDSW structure under earthquake sequences is performed. The influences of scaling factor of the aftershocks (foreshocks) to the mainshocks on the fragility of the PEDSW structure under different damage states are investigated. The numerical results reveal that neglecting the effect of earthquake sequence can lead to underestimated seismic responses and fragilities, which may result in unsafe design schemes of PEDSW structures.

Seismic Fragility Analysis of Reinforced Concrete Bridge Piers According to Damage State (철근콘크리트 교량 교각의 손상상태에 따른 지진취약도 해석)

  • Jeon, Jeong Moon;Shin, Jae Kwan;Shim, Jae Yeob;Lee, Do Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1695-1705
    • /
    • 2014
  • In the present study, a total of 275 tested specimens (149 of non-seismically designed and 126 of seismically designed) for reinforced concrete bridge piers with circular section have been investigated in order to suggest drift limits probabilistically according to damage states in seismic fragility analysis. Thus, quantitative damage states of the piers have been evaluated depending on details of the piers. Nonlinear time-history analyses have been conducted for a damaged bridge in terms of using the suggested drift limits. Then, seismic fragility analysis for a reinforced concrete bridge structure has been conducted using both suggested and existing drift limits. Comparative analyses have revealed that median values by the suggested limits is smaller than those by the existing limits. This implies that seismic performance of the structure can be overestimated when the existing limits are used.

Seismic Fragility Analysis of a RC Bridge Including Earthquake Intensity Range (지진강도 범위를 고려한 철근콘크리트 교량의 지진취약도 해석)

  • Lee, Do Hyung;Jeong, Hyeon Do;Kim, Byeong Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.635-643
    • /
    • 2018
  • In the present study, influence of earthquake intensity range on seismic fragility analysis of a RC bridge has been evaluated. For this purpose, a RC bridge damaged by a past earthquake has been selected, and analytical model of the bridge has been developed for nonlinear dynamic time-history analysis. A total of 25 recorded earthquake motions have been employed for the nonlinear analysis from which maximum lateral drift ratio of piers are obtained. Then, seismic fragility analysis has been conducted for the bridge using the nonlinear analysis results. Probability of exceeding damage has been computed in terms of using the maximum likelihood estimation, and effect of earthquake intensity range of the motions on seismic fragility curves has been assessed analytically. Analytical predictions indicate that the earthquake intensity range is of utmost significance for rationale seismic fragility analysis reflecting a physical damage state of a bridge and seismic performance evaluation of such bridge.

Identifying significant earthquake intensity measures for evaluating seismic damage and fragility of nuclear power plant structures

  • Nguyen, Duy-Duan;Thusa, Bidhek;Han, Tong-Seok;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.192-205
    • /
    • 2020
  • Seismic design practices and seismic response analyses of civil structures and nuclear power plants (NPPs) have conventionally used the peak ground acceleration (PGA) or spectral acceleration (Sa) as an intensity measure (IM) of an earthquake. However, there are many other earthquake IMs that were proposed by various researchers. The aim of this study is to investigate the correlation between seismic responses of NPP components and 23 earthquake IMs and identify the best IMs for correlating with damage of NPP structures. Particularly, low- and high-frequency ground motion records are separately accounted in correlation analyses. An advanced power reactor NPP in Korea, APR1400, is selected for numerical analyses where containment and auxiliary buildings are modeled using SAP2000. Floor displacements and accelerations are monitored for the non- and base-isolated NPP structures while shear deformations of the base isolator are additionally monitored for the base-isolated NPP. A series of Pearson's correlation coefficients are calculated to recognize the correlation between each of the 23 earthquake IMs and responses of NPP structures. The numerical results demonstrate that there is a significant difference in the correlation between earthquake IMs and seismic responses of non-isolated NPP structures considering low- and high-frequency ground motion groups. Meanwhile, a trivial discrepancy of the correlation is observed in the case of the base-isolated NPP subjected to the two groups of ground motions. Moreover, a selection of PGA or Sa for seismic response analyses of NPP structures in the high-frequency seismic regions may not be the best option. Additionally, a set of fragility curves are thereafter developed for the base-isolated NPP based on the shear deformation of lead rubber bearing (LRB) with respect to the strongly correlated IMs. The results reveal that the probability of damage to the structure is higher for low-frequency earthquakes compared with that of high-frequency ground motions.

A Study on Simple Methodology of Distruction Effects Analysis 3 Dimensional Building Target's by Weapon Systems (무기체계 3차원 건물표적에 대한 간이 파괴효과분석 방법론 연구)

  • Park, Jinho;Choi, Sangyeong;Kim, Yeongho
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.3
    • /
    • pp.89-96
    • /
    • 2015
  • In order to use missiles more effectively, assessing methodologies was advanced about weapon effects for various target types. We tried to find out the most effective analysis methodologies for missiles to attack 3 dimensional building target's and analyzed adaptedness as an assessing methodology. There are EFD (Expected Fractional Damage) and SSPD (Single Sortie Probability of Damage) methodologies to assess building target damage. In order to calculate effectiveness we used input parameter such as size of the target and CEP (Circular Error Probable), MAE_bldg (Mean Area of Effects for Building) of weapons and impact angle as encountering condition between the target and the missile. We compared EFD and SSPD, in order to analyze adaptedness as a effective methodology by CEP and MAE. The result was that EFD methodology was more adaptive to assess 3 dimensional building targets by missile systems than SSPD.

Seismic fragility evaluation of arch concrete dams through nonlinear incremental analysis using smeared crack model

  • Moradloo, Javad;Naserasadi, Kiarash;Zamani, Habib
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.747-760
    • /
    • 2018
  • In the present study, a methodology for developing fragilities of arch concrete dams to assess their performance against seismic hazards is introduced. Firstly, the probability risk and fragility curves are presented, followed by implementation and representation of the way this method is used. Amirkabir arch concrete dam was subjected to non-linear dynamic analyses. A modified three dimensional rotating smeared crack model was used to take the nonlinear behavior of mass concrete into account. The proposed model considers major characteristics of mass concrete. These characteristics are pre-softening behavior, softening initiation criteria, fracture energy conservation, suitable damping mechanism and strain rate effect. In the present analysis, complete fluid-structure interaction is included to account for appropriate fluid compressibility and absorptive reservoir boundary conditions. In this study, the Amirkabir arch concrete dam is subjected to a set of 8 three-component earthquakes each scaled to 10 increasing intensity levels. Using proposed nonlinear smeared crack model, nonlinear analysis is performed where the structure is subjected to a large set of scaled and un-scaled ground motions and the maximum responses are extracted for each one and plotted. Based on the results, fragility curves were plotted according to various and possible damages indexes. Discrete damage probabilities were calculated using statistical methods for each considered performance level and incremental nonlinear analysis. Then, fragility curves were constructed based on the lognormal distribution assumption. Two damage indexes were introduced and compared to one another. The results indicate that the dam has a proper stability under earthquake conditions at MCE level. Moreover, displacement damages index is more conservative and impractical in the fragility analysis than tensional damage index.