• 제목/요약/키워드: Damage analysis

검색결과 7,693건 처리시간 0.033초

Damage simulator를 이용한 선박의 손상강도에 관한 연구 (A Study of Strength of Damaged Ship Structures Using Damage Simulator)

  • 한대석;조대승;김진형;이탁기;임채환;이제명
    • 대한조선학회논문집
    • /
    • 제44권4호
    • /
    • pp.439-444
    • /
    • 2007
  • A damage analysis simulator, which is applicable for evaluating the residual strength of damaged ship, was developed in this paper. For this process, CDM (Continuum Damage Mechanics) approach has been implemented to the simulator by virtue of the numerical technique for evaluation of crack initiation and/or enlargement. A damage calculation program has been linked with a commercial finite element analysis code (NASTRAN) and a ultimate strength evaluation program (LSAP) in order to assess residual strength of damaged ship. As a results of series calculation for the frigate model, giving the quantitative structural damage to the ultimate strength evaluation, a residual strength with damage is predicted to be at least 70 percentage lower than the case of intact condition. It was found that the proposed technique can be used as a design support tool in the field of simulation based ship design.

사봉형 스펙트럼을 이용한 라이저 피로해석 연구 (A Study on the Riser Fatigue Analysis Using a Quarter-modal Spectrum)

  • 김상우;이승재;최솔미
    • 대한조선학회논문집
    • /
    • 제53권6호
    • /
    • pp.514-520
    • /
    • 2016
  • Oil and gas production riser systems need to be designed considering a wide band quarter-modal analysis which contains low-, wave-, VIV(Vortex induced vibration) frequencies. The VIV can be separated into cross-flow(CF) and in-line(IL) components. In this study, the various idealized tri- and quarter-modal spectra are suggested to analyze fatigue damage on the production riser system. In order to evaluate the fatigue damage increment caused by the IL's motion, tri- and quarter-modal spectral fatigue damages are calculated in time domain. And the fatigue damage calculated from two different modal spectra are compared quantitatively. Then the suitability of existent wide band fatigue damage models for quarter modal spectrum was evaluated by comparison of frequency domain calculation and time domain calculation. The result show that although spectral density of IL motion is not remarkable in quantity, the effect on the fatigue damage is significant and existent fatigue damage models are not adequately estimating damage by quarter-modal spectra.

풍수해 피해 추정을 위한 공간정보 DB의 활용방안 및 품질 점검 기준 제안 (Proposal for application of spatial data and quality check criteria for estimating damage from storm and flood)

  • 원석환;김현덕;김상민
    • 지적과 국토정보
    • /
    • 제50권2호
    • /
    • pp.81-100
    • /
    • 2020
  • 본 연구는 풍수해로부터 발생 가능한 피해를 추정하기 위한 공간정보 DB 활용 방안과 공간정보의 품질 점검 기준을 제안하고자 하였다. 국가재난관리정보시스템, 국가공간정보통합체계 공개자료 목록을 대상으로 공간정보 DB 중 풍수해 피해 추정을 위해 활용될 수 있는 데이터를 피해유형별로 매핑하였으며, 해당 데이터를 활용하여 피해 분석을 위한 품질 점검 기준 항목을 제안하였다. 본 연구를 통해 풍수해 피해 추정을 위한 공간정보 DB 활용이 가능할 것이며, 품질 점검 기준을 통해 분석 결과의 신뢰성을 담보할 수 있을 것이다.

정적 변형률 데이터를 사용한 CNN 딥러닝 기반 PSC 교량 손상위치 추정 (CNN deep learning based estimation of damage locations of a PSC bridge using static strain data)

  • 한만석;신수봉;안효준
    • 한국BIM학회 논문집
    • /
    • 제10권2호
    • /
    • pp.21-28
    • /
    • 2020
  • As the number of aging bridges increases, more studies are being conducted on developing effective and reliable methods for the assessment and maintenance of bridges. With the advancement in new sensing systems and data learning techniques through AI technology, there is growing interests in how to evaluate bridges using these advanced techniques. This paper presents a CNN(Convolution Neural Network) deep learning based technique for evaluating the damage existence and for estimating the damage location in PSC bridges using static strain data. Simulation studies were conducted to investigate the proposed method with error analysis. Damage was simulated as the reduction in the stiffness of a finite element. A data learning model was constructed by applying the CNN technique as a type of deep learning. The damage status and its location were estimated using data set built through simulation. It was assumed that the strain gauges were installed in a regular interval under the PSC bridge girders. In order to increase the accuracy in evaluating damage, the squared error between the intact and measured strains are computed and applied for training the data model. Considering the damage occurring near the supports, the results of error analysis were compared according to whether strain data near the supports were included.

Research on the educational management model for the interplay of structural damage in buildings and tunnels based on numerical solutions

  • Xiuzhi Wei;Zhen Ma;Jingtao Man;Seyyed Rohollah Taghaodi;H. Xiang
    • Geomechanics and Engineering
    • /
    • 제37권1호
    • /
    • pp.21-29
    • /
    • 2024
  • The effective management of damage in tunnels is crucial for ensuring their safety, longevity, and operational efficiency. In this paper, we propose an educational management model tailored specifically for addressing damage in tunnels, utilizing numerical solution techniques. By leveraging advanced computational methods, we aim to develop a comprehensive understanding of the factors contributing to tunnel damage and to establish proactive measures for mitigation and repair. The proposed model integrates principles of tunnel engineering, structural mechanics, and numerical analysis to facilitate a systematic approach to damage assessment, diagnosis, and management. Through the application of numerical solution techniques, such as finite element analysis, we demonstrate the efficacy of the proposed model in simulating various damage scenarios and predicting their impact on tunnel performance. Additionally, the educational component of the model provides valuable insights and training opportunities for tunnel management personnel, empowering them to make informed decisions and implement effective strategies for ensuring the structural integrity and safety of tunnel infrastructure. Overall, the proposed educational management model represents a significant advancement in tunnel management practices, offering a proactive and knowledge-driven approach to addressing damage and enhancing the resilience of tunnel systems.

등가탄성에너지법에 의한 콘크리트의 연속체 손상모델 (Contimuum Damage Model of Concrete using Hypothesis of Equivalent Elastic Energy)

  • 이기성;변근주;송하원
    • 콘크리트학회지
    • /
    • 제7권5호
    • /
    • pp.172-178
    • /
    • 1995
  • 콘크리트는 타설시부터 수많은 미세균열을 가지고 있으며, 이러한 미세균열등이 성장하고 전파되어 결국에는 콘크리트가 파괴된다. 이러한 일련의 과정을 손상이라 한다. 손상은 주로 2차 텐서로 표현되며 균열은 연속체적 현상으로 취급된다. 본 논문에서는 손상의 특성을 유효응력개념과 함께 등가탄성에너지법을 이용하여 나타내었으며, Helmholtz 자유에너지와 소산 포텐셜을 이용하여 손상모델의 손상전개와 구성방정식을 유도하였다. 구성방정식은 콘크리트의 탄성, 이방성 손상과 소성의 영향을 포함하도록 하였다. 두 가지 형태의 유효접선강성텐를 사용하였는데, 하나는 탄성-손상의 영향에 의한 것이며 다른 하나는 소성-손상의 영향에 의한 것이다. 모델을 검증하기 위하여 일축과 이축의 하중을 받는 콘크리트 요소에 대하여 유한요소해석을 하였으며 그 결과를 실험결과와 비교하였다.

Sensitivity analysis of input variables to establish fire damage thresholds for redundant electrical panels

  • Kim, Byeongjun;Lee, Jaiho;Shin, Weon Gyu
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.84-96
    • /
    • 2022
  • In the worst case, a temporary ignition source (also known as transient combustibles) between two electrical panels can damage both panels. Mitigation strategies for electrical panel fires were previously developed using fire modeling and risk analysis. However, since they do not comply with deterministic fire protection requirements, it is necessary to analyze the boundary values at which combustibles may damage targets depending on various factors. In the present study, a sensitivity analysis of input variables related to the damage threshold of two electrical panels was performed for dimensionless geometry using a Fire Dynamics Simulator (FDS). A new methodology using a damage evaluation map was developed to assess the damage of the electrical panel. The input variables were the distance between the electrical panels, the vertical height of the fuel, the size of the fire, the wind speed and the wind direction. The heat flux was determined to increase as the vertical distance between the fuel and the panel decreased, and the largest heat flux was predicted when the vertical separation distance divided by one half flame length was 0.3-0.5. As the distance between the panels increases, the heat flux decreases according to the power law, and damage can be avoided when the distance between the fuel and the panel is twice the length of the panel. When the wind direction is east and south, to avoid damage to the electrical panel the distance must be increased by 1.5 times compared to no wind. The present scale model can be applied to any configuration where combustibles are located between two electrical panels, and can provide useful guidance for the design of redundant electrical panels.

Unified plastic-damage model for concrete and its applications to dynamic nonlinear analysis of structures

  • Wu, Jian-Ying;Li, Jie
    • Structural Engineering and Mechanics
    • /
    • 제25권5호
    • /
    • pp.519-540
    • /
    • 2007
  • In this paper, the energy-based plastic-damage model previously proposed by the authors [International Journal of Solids and Structures, 43(3-4): 583-612] is first simplified with an empirically defined evolution law for the irreversible strains, and then it is extended to its rate-dependent version to account for the strain rate effect. Regarding the energy dissipation by the motion of the structure under dynamic loadings, within the framework of continuum damage mechanics a new damping model is proposed and incorporated into the developed rate-dependent plastic-damage mode, leading to a unified constitutive model which is capable of directly considering the damping on the material scale. Pertinent computational aspects concerning the numerical implementation and the algorithmic consistent modulus for the unified model are also discussed in details, through which the dynamic nonlinear analysis of damping structures can be coped with by the same procedures as those without damping. The proposed unified plastic-damage model is verfied by the simulations of concrete specimens under different quasistatic and high rate straining loading conditions, and is then applied to the Koyna dam under earthquake motions. The numerical predictions agree fairly well with the results obtained from experimental tests and/or reported by other investigators, demonstrating its capability for reproducing most of the typical nonlinear performances of concrete under quasi-static and dynamic loading conditions.

틸트 로터형 무인항공기의 손상허용 설계 (Damage Tolerant Design for the Tilt Rotor UAV)

  • 박영철;임종빈;박정선
    • 항공우주시스템공학회지
    • /
    • 제1권2호
    • /
    • pp.27-36
    • /
    • 2007
  • The Damage Tolerant Design is developed to help alleviate structural failure and cracking problems in aerospace structures. Recently, the Damage Tolerant Design is required and recommended for most of aircraft design. In this paper, the damage tolerant design is applied to tilt rotor UAV. First of all, the fatigue load spectrum for the tilt rotor UAV is developed and fatigue analysis is performed for the flaperon joint which has FCL (fatigue critical location). Tilt rotor UAV has two modes: helicopter mode when UAV is taking off and landing; fixed wing mode when the tilt rotor UAV is cruising. To make fatigue load spectrum, FELIX is used for helicopter mode. TWIST is used for fixed wing mode. Fatigue analysis of flaperon joint is performed using fatigue load spectrum. E-N curve approach is used for picking crack initiation point. The LEFM(Linear Elastic Fracture Method) is considered for analyzing crack growth or propagation. Finally, including the crack initiation and propagation, the fatigue life is evaluated. Therefore the Damage Tolerant Design can be done.

  • PDF

고압가스 연료탱크의 손상평가를 위한 음향방출 변수의 분석 (Damage Evaluation for High Pressure Fuel Tank by Analysis of AE Parameters)

  • 지현섭;이종오;주노회;이종규;소철호
    • Composites Research
    • /
    • 제24권4호
    • /
    • pp.36-40
    • /
    • 2011
  • 본 논문은 자동차용 type II CNG 연료탱크의 손상평가를 위하여 파열시험 중 발생하는 음향방출 변수의 분석에 관한 연구이다. 음향방출 신호의 kaiser effect, felicity effect 및 creep effect의 관찰과 전체 hits에서 진폭 60dB이상의 hits가 차지하는 비율 계산으로 연료탱크의 손상도를 평가할 수 있었으며, 평균 rise time, 평균 진폭 및 평균 initial, reverbration 주파수를 분석함으로써 압력용기의 손상메커니즘을 추정하였다.