• 제목/요약/키워드: Dam core

검색결과 96건 처리시간 0.025초

Aanalysis of Geophysical exploration tendency of C.F.R.D (표면차수벽 석괴댐의 물리탐사 경향 분석)

  • Kim, Jae-Hong;Shin, Dong-Hoon;Im, En-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.871-876
    • /
    • 2010
  • When surface Concrete Face Rock fill Dam constructs than existent center core type rock fill dam, it is much prevalent form in domestic these day by quality control of that is profitable and weather condition etc. of coreZone. C.F.R.D is less research about seismic survey(Refractional Seismic Prospectin, Resistivity Prospecting) of levee body than fill dam. Thus as C.F.R.D seismic survey is less, safety of that consist is short most development flue is high reason. That is not checking target of minuteness safety diagnosis and so on by short operation period. Wish to analyze inquiry incidental and difference with center core type dam and acquire C.F.R.D preservation administration upper necessary inquiry condition forward hereafter.

  • PDF

The Effect of Remedial Works to Control the Leakage Problem in Earth Fill Dam by Compaction Grouting (콤팩션 그라우팅에 의한 흙댐의 누수복원 공사효과 분석)

  • Chun, Byung-Sik;Lee, Yong-Jae;Chung, Ha-Ik
    • Journal of the Korean Geotechnical Society
    • /
    • 제22권11호
    • /
    • pp.13-23
    • /
    • 2006
  • The sinkhole and leakage in dam core were detected at one of earth fill dams in Korea. The damage areas in the core of the dam were repaired by compaction grouting method. This study is to evaluate compaction grouting activity by in-situ and laboratory experiments before, during and after the remedial work. The intensive site investigation and geophysical survey were conducted during and after the compaction grouting work. The compaction grouting work was carried out for the damaged dam core between June 16 and August 24, 2000. The leakage reduction generally occurred in the core of the dam after the remedial work. The use of compaction grouting was considered the proper countermeasures for repairing the damaged dam. It shows that the loose or voided zones have been properly filled and the leakage has been reduced by about 96% of that before the treatment of the remedial work performed at dam core by compaction grouting.

Static and Dynamic Material Properties and Aging Characteristics of Dam Core Material (기존댐 해체 조사를 통한 댐 코어 재료의 정적·동적 물성 및 Aging 특성 연구)

  • Kim, Shin-Il;Kim, Dong-Soo;Yum, Kyung-Taek;Choo, Yun Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제31권6C호
    • /
    • pp.221-229
    • /
    • 2011
  • A core zone of a fill dam is an important part of a dam for cutoff of water. Therefore, the material properties and behavior characteristics of a core zone are very important factors in an analysis of dam stability. However, the investigation on material properties of actual dam core is extremely rare so far. The material properties have been acquired or estimated by indirect methods like a surface wave surveying or empirical equation. In this research, in-situ and laboratory tests were conducted during dismantling an existing dam directly to investigate characteristics of the core zone in terms of the depth and transient variation of properties after construction of the dam. Dynamic material properties like shear wave velocity and shear modulus were measured and compared to other existing empirical correlations. In addition, aging characteristics of dynamic material properties were investigated by a series of laboratory tests.

Applicability of CGS for Remediation and Reinforcement of Damaged Earth Dam Core (손상된 흙댐 코어의 보수.보강을 위한 CGS 공법의 적용성)

  • 천병식;최중근
    • Journal of the Korean Geotechnical Society
    • /
    • 제19권6호
    • /
    • pp.325-334
    • /
    • 2003
  • It is very difficult to rehabilitate the damaged earth dam core to manage it stably against development of flow path and increase of leakage by hydraulic fracture. In this study, application of CGS (Compaction Grouting System) to damaged earth dam core was noticed by analyzing and comparing the results of the in-situ data and FEM. Results of in-situ data showed that according as progress of rehabilitation works tip pressures increased and volume of injection decreased, voids of damaged dam core were filled with materials similar to origin dam core. Rehabilitations caused turbidity and volume of leakage to decrease at the same water level. Also, results of FEM analysis indicated that permeability decreased by rehabilitation. Through this study, it is proved that CGS is able to decrease permeability coefficient, volume of leakage and turbidity on damaged earth dam core.

A Study on the Settlement Characteristics of Fill Dam (FILL DAM의 침하특성(沈下特性)에 관(關)한 연구(硏究))

  • Moon, Tae Wan;Kang, Yea Mook
    • Korean Journal of Agricultural Science
    • /
    • 제12권2호
    • /
    • pp.282-291
    • /
    • 1985
  • In order to investigate the settlement characteristics of fill dam with decomposed granite is used as a embankment material instead of conventional clay collected behavoir of Andong dam and analyzed. Andong dam is the use of decomposed granite in the embankment material, and various type of gauges were installed in dam to measure a pore pressure, interval vertical settlement, dam crest settlement, relative settlement, surface settlement and internal horizontal movement. The results were summerized as follows; 1. With the increase of embankment loading, the settlement of core zone during construction increased with linear and under the effective stress $7kg/cm^2$ vertical settlement ratio ranged between 0.1 and 0.8% approximately and showed smaller value than that of fill dam with clay were used as a embankment material. 2. Though embankment loading was increased with about over central part of embankment height, the settlement of core zone in the lower part of the embankment was influenced slightly. 3. Pore pressure responsed sensitively with the increase of coefficient of permeability in core zone and settlement increased with pore pressure were dispersed. 4. During construction relative settlement in the lower part of the embankment has the largest influence on magnitude of the relative density and after construction settlement showed larger value in the core zone which has the largest compression height. 5. Settlement distribution of dam crest showed larger value in the central part, maximum section of dam, but smaller value in near the abutment.

  • PDF

Large deformation performance of the anti-seepage system connection part in earth core dam built on thick overburden

  • Yu, Xiang;Wang, Gan;Wang, Yuke;Du, Xueming;Qu, Yongqian
    • Geomechanics and Engineering
    • /
    • 제29권6호
    • /
    • pp.683-696
    • /
    • 2022
  • Dams are inevitably planned to be built on thick overburden with high permeability and deformability. The connection part between concrete cut-off wall in overburden and earth core in dam body is not only a key part of the anti-seepage system, but also a weak position. Large uneven settlement will be aroused at the concoction part. However, the interaction behavior and the scope of the connection part cannot be determined effectively. In this paper, numerical analysis of a high earth core dam built on thick overburden was carried out with large deformation FE method. The mechanical behavior of the connection part was detail studied. It can be drawn that there is little differences in dam integral deformation for different analysis method, but big differences were found at the connection part. The large deformation analysis method can reasonably describe the process that concrete wall penetrates into soil. The high plasticity clay has stronger ability to adapt to large uneven deformation which can reduce stress level, and stress state of concrete wall is also improved. The scope of high plasticity clay zone in the connection part can be determined according to stress level of soils and penetration depth of concrete wall.

Near-fault ground motion effects on the nonlinear response of dam-reservoir-foundation systems

  • Bayraktar, Alemdar;Altunisik, Ahmet Can;Sevim, Baris;Kartal, Murat Emre;Turker, Temel
    • Structural Engineering and Mechanics
    • /
    • 제28권4호
    • /
    • pp.411-442
    • /
    • 2008
  • Ground motions in near source region of large crustal earthquakes are significantly affected by rupture directivity and tectonic fling. These effects are the strongest at longer periods and they can have a significant impact on Engineering Structures. In this paper, it is aimed to determine near-fault ground motion effects on the nonlinear response of dams including dam-reservoir-foundation interaction. Four different types of dam, which are gravity, arch, concrete faced rockfill and clay core rockfill dams, are selected to investigate the near-fault ground motion effects on dam responses. The behavior of reservoir is taken into account by using Lagrangian approach. Strong ground motion records of Duzce (1999), Northridge (1994) and Erzincan (1992) earthquakes are selected for the analyses. Displacements, maximum and minimum principal stresses are determined by using the finite element method. The displacements and principal stresses obtained from the four different dam types subjected to these nearfault strong-ground motions are compared with each other. It is seen from the results that near-fault ground motions have different impacts on the dam types.

Prediction of Crest Settlement of Center Cored Rockfill Dam using an Artificial Neural Network Model (인공신경망기법을 이용한 중심차수벽형 석괴댐의 정부침하량 예측)

  • Kim, Yong-Seong;Kim, Bum-Joo;Oh, Sang-Eun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제54권4호
    • /
    • pp.73-81
    • /
    • 2012
  • In this study, the settlement data of 32 center cored rockfill dams (total 39 monitored data) were collected and analyzed to develop the method to predict the crest settlement of a CCRD after impounding by using the internal settlement data occurred during construction. An artificial neural network (ANN) modeling was used in developing the method, which was considered to be a more reliable approach since in the ANN model dam height, core width, and core type were all considered as input variables in deriving the crest settlement, whereas in conventional methods, such as Clements's method, only dam height is used as a variable. The ANN analysis results showed a good agreement with the measured data, compared to those by the conventional methods using regression analysis. In addition, a simple procedure to use the ANN model for engineers in practice was provided by proposing the equations used for given input values.

Effect analysis by time passage after Repair & Reinforcement of Fill Dams (필댐 보수보강후 시간경과에 따른 효과 분석)

  • Kim, Jae-Hong;Oh, Byung-Hyun;Im, En-sang;Hong, Won-Pho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.697-703
    • /
    • 2008
  • Excessive water leakage phenomenon happens through damage of nation core zone of about 17,000 storage of water facilities or collapse of dam is worried, is being damaged or enforce dilapidated fill dam core zone's repair reinforcement. Example that use grouting method of construction considering construction and economic performance etc. recently by repair reinforcement way about defect of dam is increased. Permeation grouting method repair & reinforcement of fill dam countermeasure is preferred in nation. Do that is economical to decide these repair reinforcement effect and grouting effect estimation method that do not give damage to dam is effective. Therefore, observing electricity resistivity Survey change of dam since grouting reinforcement using Electric resistivity Survey inquiry of seismic survey method in this research, Wished to verify grouting effect whether is possible as Electric resistivity Survey, and study whether integrity of dam through repair reinforcement defined.

  • PDF

Evaluation of hydraulic fracturing of rockfill dam during first filling by measurement and numerical analysis (계측 및 수치해석에 의한 초기담수시 사력댐 코어존 수압할렬 안정성 분석)

  • Lee, Jong-Wook;Cho, Sung-Eun;Kim, Ki-Young;Lim, Heui-Dae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.799-805
    • /
    • 2008
  • In this study load transfer and hydraulic fracturing of core zone of object rockfill dam are estimated and monitored by a numerical analysis and a instrumentation immediately after the construction and during the first impounding. The estimated results are compared with the monitored results. It reveal that the core zone is safe on the hydraulic fracturing.

  • PDF