• Title/Summary/Keyword: Dam Breaking

Search Result 32, Processing Time 0.027 seconds

COMPUTATIONAL STUDY ON TWO DIMENSIONAL DAM BREAKING SIMULATION USING LATTICE BOLTZMANN METHOD (LBM을 이용한 Dam Breaking 수치해석 연구)

  • Jung, Rho-Taek;Hasan, Md. Kamrul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.54-57
    • /
    • 2011
  • In this paper we present an algorithm about how to simulate two dimensional dam breaking with lattice Boltzmann method (LBM). LBM considers a typical volume element of fluid to be composed of a collection of particles that represented by a particle velocity distribution function for each fluid component at each grid point. We use the modified Lattice Boltzmann Method for incompressible fluid. This paper will represent detailed information on single phase flow which considers only the water instead of both air and water. Interface treatment and conservation of mass are the most important things in simulating free surface where the Interface is treated by mass exchange with the water region. We consider the surface tension on the interface and also bounce back boundary condition for the treatment of solid obstacles. We will compare the results of the simulation with some methods and experimental results.

  • PDF

Flood Impact Pressure Analysis of Vertical Wall Structures using PLIC-VOF Method with Lagrangian Advection Algorithm

  • Phan, Hoang-Nam;Lee, Jee-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.675-682
    • /
    • 2010
  • The flood impact pressure acting on a vertical wall resulting from a dam-breaking problem is simulated using a navier-Stokes(N-S) solver. The N-S solver uses Eulerian Finite Volume Method(FVM) along with Volume Of Fluid(VOF) method for 2-D incompressible free surface flows. A Split Lagrangian Advection(SLA) scheme for VOF method is implemented in this paper. The SLA scheme is developed based on an algorithm of Piecewise Linear Interface Calculation(PLIC). The coupling between the continuity and momentum equations is affected by using a well-known Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm. Several two-dimensional numerical simulations of the dam-breaking problem are presented to validate the accuracy and demonstrate the capability of the present algorithm. The significance of the time step and grid resolution are also discussed. The computational results are compared with experimental data and with computations by other numerical methods. The results showed a favorable agreement of water impact pressure as well as the global fluid motion.

Three-dimensional Numerical Analysis of Dam-break Waves on a Fixed and Movable Bed (고정상 및 이동상 수로에서 댐 붕괴파의 3차원 수치해석)

  • Kim, Dae Geun;Hwang, Gun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4B
    • /
    • pp.333-341
    • /
    • 2011
  • This study analyzed the propagation of dam-break waves in an area directly downstream of a dam by using 3D numerical modeling with RANS as the governing equation. In this area, the flow of the waves has three dimensional characteristics due to the instantaneous dam break. In particular, the dam-break flows are characterized by a highly unsteady and discontinuous flow, a mixture of the sharp flood waves and their reflected waves, a mixture of subcritical and supercritical flow, and propagation in a dry and movable bed. 2D numerical modeling, in which the governing equation is the shallow water equation, was regarded as restricted in terms of dealing with the sharp fluctuation of the water level at the dam-breaking point and water level vibration at the reservoir. However, in this 30 analysis of flood wave propagation due to partial dam breaking and dam-break in channels with $90^{\circ}$ bend, those phenomena were properly simulated. In addition, the flood wave and bed profiles in a movable bed with a flat/upward/downward bed step, which represents channel aggradation or degradation, was also successfully simulated.

Basic Study of Glimm's Algorithm for Green Water Simulation

  • Han Ju-Chull;Lee Seung-Keun;Lee Gyoung-Woo
    • Journal of Navigation and Port Research
    • /
    • v.28 no.9
    • /
    • pp.809-813
    • /
    • 2004
  • Experiments revealed that green water phenomena resemble dam-break, in which flow over deck edge forms a vertical wall of water and suddenly falls down into deck. In this paper the dam breaking problems were formulated using Glimm's algorithm, so-rolled, Random Choice method and, several validations were presented.

Comparison of different iterative schemes for ISPH based on Rankine source solution

  • Zheng, Xing;Ma, Qing-wei;Duan, Wen-yang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.390-403
    • /
    • 2017
  • Smoothed Particle Hydrodynamics (SPH) method has a good adaptability for the simulation of free surface flow problems. There are two forms of SPH. One is weak compressible SPH and the other one is incompressible SPH (ISPH). Compared with the former one, ISPH method performs better in many cases. ISPH based on Rankine source solution can perform better than traditional ISPH, as it can use larger stepping length by avoiding the second order derivative in pressure Poisson equation. However, ISPH_R method needs to solve the sparse linear matrix for pressure Poisson equation, which is one of the most expensive parts during one time stepping calculation. Iterative methods are normally used for solving Poisson equation with large particle numbers. However, there are many iterative methods available and the question for using which one is still open. In this paper, three iterative methods, CGS, Bi-CGstab and GMRES are compared, which are suitable and typical for large unsymmetrical sparse matrix solutions. According to the numerical tests on different cases, still water test, dam breaking, violent tank sloshing, solitary wave slamming, the GMRES method is more efficient than CGS and Bi-CGstab for ISPH method.

IMPROVEMENT OF MPS METHOD IN SIMULATING VIOLENT FREE-SURFACE MOTION AND PREDICTING IMPACT-LOADS (유체 충격 하중 예측을 위한 MPS법의 개량)

  • Hwang, S.C.;Lee, B.H.;Park, J.C.
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.71-80
    • /
    • 2010
  • The violent free-surface motions and the corresponding impact loads are numerically simulated by using the Moving Particle Semi-implicit (MPS) method, which was originally proposed by Koshizuka and Oka (1996) for incompressible flows. In the original MPS method, there were several shortcoming including non-optimal source term, gradient and collision models, and search of free-surface particles, which led to less-accurate fluid motions and non-physical pressure fluctuations. In the present study, how those defects can be remedied is illustrated by step-by-step improvements in respective processes of the revised MPS method. The improvement of each step is explained and numerically demonstrated. The numerical results are also compared with the experimental results of Martin and Moyce (1952) for dam-breaking problem. The current numerical results for violent free-surface motions and impact pressures are in good agreement with their experimental data.

The Time Prediction for Escape from Flood Using GIS - The Case of Chun-chon City - (GIS분석을 통한 홍수시의 대피예보를 위한 시간 예측 - 춘천시를 중심으로 -)

  • 양인태;김욱남;김재철;박재국
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.3
    • /
    • pp.211-217
    • /
    • 2001
  • Chun-chon city is the area that is estimated to be damaged by breaking of Dam by a flood among several natural disaster. If so, what is the way that minimize the damage\ulcorner There are many ones but it may be best that we take shelter from it before the breaking of Dam. Then when must we do\ulcorner By what instrument can we minimize the damage of people. And how do we compute the time\ulcorner In this study, using buffering, overlap and network, GIS ability based on ARC/INFO. I chose six routesto take shelter outside of Chun-chon city, calculated the traffic volume of each ones, and estimated the time for decentralization of risks.

  • PDF

Study on the Free Surface Behavior Using the Lattice Boltzmann Method (격자볼츠만법을 이용한 자유수면 거동 특성 연구)

  • Jung, Rho-Taek
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.255-262
    • /
    • 2013
  • The boltzmann equation is based on the particle distribution function while the Navire-Stokes equation based on the continuum theory. In order to simulate free surface flow, this paper used the Lattice Boltzmann Method of which is the discretized form. The detail study on the characteristics of the Lattice Boltzmann Method for the free surface simulation was investigated. The developed code was validated with the traditional dam breaking problem by tracking the front position of the water. A basic roles of density functions in the Lattice Boltzmann Method is discussed. To have an engineering applications, the simulation is also conducted the free surface behavior with an arbitrary wall geometry.

Comparison of Fluid Modeling Methods Based on SPH and ISPH for a Buoy Design for a Wave Energy Converter (파력발전기 부유체설계를 위한 SPH와 ISPH 유체모델링 기법 비교)

  • Jun, Chul-Woong;Sohn, Jeong-Hyun;Yang, Min-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.94-99
    • /
    • 2017
  • The buoy of the wave energy converter moves by direct contact with the fluid. In order to design a buoy by using the numerical method, it is necessary to analyze not only the contact with the fluid but also the exact behavior of the fluid. In this paper, differences between weakly compressible smoothed particle hydrodynamics (WCSPH) and incompressible smoothed particle hydrodynamics (ISPH) are compared and analyzed for two-dimensional dam breaking simulation. ABAQUS, which is a commercial analysis program, is used for WCSPH analysis. A laboratory code is developed for ISPH analysis. The surface shape, the velocity, and the pressure pattern of the fluid are compared. The results of the laboratory code show the similar tendencies with those of ABAQUS, and there is a little difference in the pressure result.

Study on the Effects of Computational Parameters in SPH Method (SPH 기법의 계산인자 민감도에 대한 연구)

  • Kim, Yoo-Il;Nam, Bo-Woo;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.4
    • /
    • pp.398-407
    • /
    • 2007
  • A smoothed particle hydrodynamics (SPH) method is applied for simulating two-dimensional free-surface problems. The SPH method based on the Lagrangian formulation provides realistic flow motions with violent surface deformation, fragmentation and reunification. In this study, the effect of computational parameters in SPH simulation is explored through two-dimensional dam-breaking and sloshing problem. The parameters to be considered are the speed of sound, the frequency of density re-initialization, the number of particle and smoothing length. Through a series of numerical test. detailed information was obtained about how SPH solution can be more stabilized and improved by adjusting computational parameters. Finally, some numerical simulations for various fluid flow problem were carried out based on the parameters chosen through the sensitivity study.