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COMPUTATIONAL STUDY ON TWO DIMENSINAL DAM BREAKING

SIMULATION USING LATTICE

BOLTZMANN METHOD

Rho-Taek Jung,1 Md. Kamrul Hasan’

In this paper we present an algorithm about how to simulate two dimensional dam breaking with lattice
Boltzmann method (LBM). LBM considers a typical volume element of fluid to be composed of a collection of
particles that represented by a particle velocity distribution function for each fluid component at each grid point. We
use the modified Lattice Boltzmann Method for incompressible fluid. This paper will represent detailed information
on single phase flow which considers only the water instead of both air and water. Interface treatment and
conservation of mass are the most important things in simulating free surface where the Interface is treated by mass
exchange with the water region. We consider the surface tension on the interface and also bounce back boundary
condition for the treatment of solid obstacles. We will compare the results of the simulation with some methods and

experimental results.
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1. INTRODUCTION

One of the important applications of free surface is breaking
dam as it is directly related to free surface flow. Free surface
actually is a boundary between two fluids, for example air and
water. This means free surface flow is defined as a multiphase
flow. But in case of particular application such as dam breaking,
the air part can be neglected and so the multiphase is converted
to single phase. In order to simulate the free surface, one has to
be very careful in handling the interface as the proper treatment
of interface gives good simulation. In this paper we use the
Lattice Boltzmann Method for incompressible flow. We present
the mathematical presentation of interface movement by mass

exchange in the interface. Interface advection is done with the
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help of the fluid fraction, which is updated by recording the
inflow and outflow of mass via distribution functions. We apply
the second order bounce back boundary conditions for the
treatment of solid. The surface tension effect is also taken into

account in the interface.

2. LATTICE BOLTZMANN METHOD

Lattice Boltzmann Method (LBM)
Boltzmann equation(LBE). The LBE was derived from the lattice

works with Lattice
gas methods and it can be regarded as the first order
discretization of the Boltzmann equation in the phase space[6].
The LBE looks like below:

fi(xrei ALEHAL - fi(x,0)= -1/T [fi(x,0)-fieq(x,)] 1)

In these equations fi indicates the distribution function that
means the probability of finding a particle in a phase space at



ot
Hl
2
22
Jo
i_,‘
oK
o
ton

particular velocity (ei), position(x) and timestep(t).fieq represents
equilibrium distribution function and T is th e relaxation
time. This model is explained in more detail in eg[l]. It is
commonly called LBGK model due to the simplification of the
particle collisions with a single relaxation time[3,4].

For the LBE, the velocity space of the molecules is
discretized. So depending on the dimension and the number of
velocity directions, there are different models that we can use.
Here we have used two dimensional D2Q9 model. This means
the number of velocity direction is nine and it is two
dimensional square lattice. The equilibrium function for the LBE
for incompressible fluid flow can be written as below[1]:

fieq=wil p+(3/c))ei.ut(9/2¢)(ei.u)-(3/2¢))u’] )

Where c=Ax/At and called the basic speed on the lattice and
counted as 1 lattice unit per second and wi is called the weight
of the lattice. The weights wi are :w0= 4/9, wl-4= 1/9, w5-8
=1/36. The definition of velocity directionis:

ei=(0,0) for i = 0;
ei+/2c0{0.25(2i-9)1},+/25in{0.252i-9)m} e, for i = 5-8 ©)]
ei=[cos,sin{0.5(i-1)n}]c for i=1-4

The microscopic variables velocity and density are directly
calculated from the distribution functions as follows:

p=2fi and u=>ceifi 0

The relaxation time (t) is directly related to viscosity of the
fluid (v). The relaxation time controls the rate at which the
equilibrium is approached or another way we can call it as the
viscosity of the fluid.

v=(T - 1/2)csZAt, where cs=c/+/3,called the speed of sound of
thefluid.

3. FREE SURFACE TREATMENT

In the governing equation we have added the gravitational
acceleration (g) as the gravity is the only force working on the
fluid[7]. The force term is also weighted according to each

velocity direction.

fi(xtei At,t+At) - fi(x,t)=-1/1[fi(x,t)-fieq(x,t) [twi.p.eelg  (5)
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3.1 Interface advection

For the movement of interface we consider three types of
cells: fluid cells, interface cells and empty cells. Interface
advection is done through the mass exchange between interface
cells that is directly computed from the distribution functions
[2,5]. We initialize the fluid fraction (¢) value for every cell that
is computed with mass (m) dividing by the multiplication of
density (p) and volume (v) of each cell (¢ = m/(p*v)). For the
fluid cells the fluid fraction is equal to one and for empty cell
its value is zero whereas we have fraction value of fluid fraction
for interface cells [7, 2]. The mass exchange between interfaces
is done as below.

Ami(x,tH+A=[fi(x+ei,t) - fi(x,h].(e(x+elty+e(x,t))/2 (6)
Where T = - i. For example, in the computational domain if
we have an interface at (i,j) and another interface at ( it+l, j)

then the mass exchange between these interface will be follows:
Am(i,j, =[f(+1,),3) ~ i, D)]*(e(i+1))e(i)))2 ™

The empty cells are never taken into account for the mass
exchange as we are neglecting the air part of the domain.

After computing the mass exchange for every interface cell,
this exchanged mass is added to the previous mass of that

interface cell to get the new mass in the current time steps.

m"™(ij)=m"(i,j)+ Am(ij), where n is previous time step and
ntl is the new time step.

3.2 Boundary condition

Two types of boundary conditions are considered in this
paper: One for the free surface and another one for the solid
boundary. During streaming the distribution functions from fluid
cells and interface cells can be streamed normally, while the
distribution functions (Dfs) that are coming from empty cells
need to be reconstructed. It is assumed that the fluid has a
much lower kinematic viscosity and the gas at the interface
moves in the same way that a fluid does. For example, if there
is an interface cell at (i,j) and an empty cell at (i+l,j) then the
Df coming from (i+l,j) is reconstructed by the following

equation.
11,3 =[feqi, 1 y+eq(ig,3)].(1+0ki(i)) - (i) ®
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Where o is the surface tension in the interface and k is
curvature. The curvature is calculated from the fluid fraction
values in the interface with the finite difference scheme.

k= Va ©)

Where n=V¢/|Ve| and n is normal vector on the interface.

For the treatment of solid boundary, we consider the second
order bounce back boundary condition. According to bounce back
boundary method [8, 9], the solid boundary reflects back the
distribution function that is coming to the boundary. This is
governed by the following equation.

fi(x-+ei At Ab=fi(x,t)- 1/ TH[fi(x,t)-fieq(x,t)] (10)

3.3 Treatment of excess mass

After getting all the Dfs for an interface cell, the density and
velocity are calculated. Then the new mass and new density is
used to calculate to find out the new fluid fraction of each cell.
Sometimes it is found that the fluid fraction is greater than one
or less than zero for the interface cells. This means the interface
has some positive or negative excess mass that are needed to be
distributed to the surrounding cells in order to keep the
conservation of mass. If e>1 the cell is called filled cell and if
e<0 it is called emptied cells. For the filled cells the excess
mass is calculated as mex = m - (p.v) and for the emptied
cells mex = m.

The excess masses for the filled cells are distributed to the
surrounding interface and empty cells. In order to do that first
we have to make the empty cell into interface and then the
excess mass is distributed evenly to the surrounding cells. In
case of emptied cells, the excess mass is distributed evenly
among the interface and fluid cells.

4. Results

We set up a computational domain of 100x100 and the
physical length is assumed Imm. So we have a physical spatial
step  Ax’=0.0000lm. We have taken the
restriction g=0.005[2] and depending on this value we found out

compressibility

the physical time step. Parameters like viscosity, density and
surface tension have been made non-dimensional using this
physical spatial and time step. The viscosity is used to find out
the non-dimensional relaxation parameter (t=1). Here we have

given simulation result of early time step. The results show the
free surface contour and velocity vector field at the early steps.
The velocity vector proves that the fluid is going downward
direction according to gravitational acceleration and the contour

shows the advection of breaking time as time goes by.
5. Conclusion

In this paper we have presented the procedure about how to
handle the single phase free surface with LBM. Lattice
Boltzmann Method is one of the powerful tools for the
computational fluid dynamics. Ease of implementation of code,
extensibility and computational efficiency are the major reasons
for the growing field of LBM application and increasing
popularity. The LBM differs from methods which are directly
based on Navier-Stokes equations in various ways. The boundary
condition can easily be implemented in this method. In our
simulation result, we can see the velocity on the boundary
getting smaller because of the proper implementation of bounce
back boundary condition. The important thing is to maintain the
mass conservation during the movement of interface and we have
done it correctly. In future we will try to make more good and

accurate results in order to simulate the free surface.
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