• Title/Summary/Keyword: Daisy chain method

Search Result 7, Processing Time 0.026 seconds

Daisy Chain Method for Control Allocation Based Fault-Tolerant Control

  • Kim, Jiyeon;Yang, Inseok;Lee, Dongik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.5
    • /
    • pp.265-272
    • /
    • 2013
  • This paper addresses a control allocation method for fault-tolerant control by redistributing redundant control surfaces. The proposed method is based on a classical daisy chain approach for the compensation of faulty actuators. The existing daisy chain method calculates a desired moment according to a number of actuator groups. However, this method has a significant limitation; that is, any faulty actuator belonging to the last actuator group cannot be compensated, since there is no more redundant actuator group that can be used to generate the required moments. In this paper, a modified daisy chain method is proposed to overcome this problem. Using the proposed method, the order of actuator groups is readjusted so that actuator groups containing any faulty actuator are always placed in an upper group instead of the last one. A set of simulation results with an F-18 HARV aircraft demonstrate that the proposed method can achieve better performance than the existing daisy chain method.

A control system of each product with a remote controller for Multi-vision which is composed of several products (Multi-Vision으로 구성된 제품들의 리모컨을 통한 개별 제어 시스템)

  • Bae, Sang-Ho;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.149-152
    • /
    • 2011
  • A Multi-Vision needs an image adjust of each product to make the same picture quality for all products when it's installed. Owing to this reason need individual control. This document request indivisual control method for each product with the Remote controller. To realize this method need make Set ID and Picture ID on the UI and need daisy chain of cable to connect Remocon code(IR Signal) In to Out, After allocation the Set ID for each product. Picture ID of the product which want to change picture quality make equal to Set ID. And the product which is same Set ID and Picture ID is only controlled through decoding of Remocon code to Scaler.

  • PDF

Multiple LCD System Development of daisy-chain Method using LVDS (LVDS를 이용한 daisy-chain 방식의 다중 LCD 시스템 개발)

  • Kim, Jae-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2747-2754
    • /
    • 2012
  • This thesis explains the development of multiple LCD system with the additional function to maximize the utilization of PC contents. The newly developed system is composed of host LCD and slave LCD. Host LCD decodes and outputs the image and voice of NTSC, PAL, SECAM signals. It also converts the decoded signals into LVDS signals before transmitting them to slave LCD stage. In addition, the installation of CF Memory and USB Memory helps display multi-media data. Unlike the host LCD, since not including the tuner and memory part, the slave LCD can't receive TV signals and play video signals. It only has the function to receive LVDS image signals and display on a LCD panel. This newly developed multi-LCD system has competitiveness in various aspects. With its simple structure, the failure rate, price and display power are relatively low due to its simplification of the control part. It has price and functional competitiveness as the product whose host LCD can control the entire slave LCD in terms of channel, volume, and video output.

Fine-Pitch Solder on Pad Process for Microbump Interconnection

  • Bae, Hyun-Cheol;Lee, Haksun;Choi, Kwang-Seong;Eom, Yong-Sung
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1152-1155
    • /
    • 2013
  • A cost-effective and simple solder on pad (SoP) process is proposed for a fine-pitch microbump interconnection. A novel solder bump maker (SBM) material is applied to form a 60-${\mu}m$ pitch SoP. SBM, which is composed of ternary Sn3.0Ag0.5Cu (SAC305) solder powder and a polymer resin, is a paste material used to perform a fine-pitch SoP through a screen printing method. By optimizing the volumetric ratio of the resin, deoxidizing agent, and SAC305 solder powder, the oxide layers on the solder powder and Cu pads are successfully removed during the bumping process without additional treatment or equipment. Test vehicles with a daisy chain pattern are fabricated to develop the fine-pitch SoP process and evaluate the fine-pitch interconnection. The fabricated Si chip has 6,724 bumps with a 45-${\mu}m$ diameter and 60-${\mu}m$ pitch. The chip is flip chip bonded with a Si substrate using an underfill material with fluxing features. Using the fluxing underfill material is advantageous since it eliminates the flux cleaning process and capillary flow process of the underfill. The optimized bonding process is validated through an electrical characterization of the daisy chain pattern. This work is the first report on a successful operation of a fine-pitch SoP and microbump interconnection using a screen printing process.

Development of Multiple Channel Measurement System for IC Socket (IC 소켓 검사용 다중 채널 측정 시스템 개발)

  • Gang, Sang-Il;Song, Sung-Yong;Yoon, Dal-Hwan
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.315-321
    • /
    • 2021
  • In this paper, we have developed the multiple channel measurement system for IC Socket Test. The one can test the current-voltage measurements for pitting the several device specification, which analyze the thin current from several ㎂ to 5A with very low resistor mΩ. The increasement of the IC socket channel with lead pitch under 0.25 mm be need to perform several functions, concurrently. The system to perform these functions be designed to integrate several SMU(source measure unit) on board. So, we can reduce the 2 minutes test time per channel point to 40 sec, with daisy chain test method. Using by graphic interface, I-V curve mode and data logging technologies, we can implement the test flow methods and can make economies the time and cost.

Power Distribution Optimization of Multi-stack Fuel Cell Systems for Improving the Efficiency of Residential Fuel Cell (주택용 연료전지 효율 향상을 위한 다중 스택 연료전지 시스템의 전력 분배 최적화)

  • TAESEONG KANG;SEONGHYEON HAM;HWANYEONG OH;YOON-YOUNG CHOI;MINJIN KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.4
    • /
    • pp.358-368
    • /
    • 2023
  • The fuel cell market is expected to grow rapidly. Therefore, it is necessary to scale up fuel cells for buildings, power generation, and ships. A multi-stack system can be an effective way to expand the capacity of a fuel cell. Multi-stack fuel cell systems are better than single-stack systems in terms of efficiency, reliability, durability and maintenance. In this research, we developed a residential fuel cell stack and system model that generates electricity using the fuel cell-photovoltaic hybrid system. The efficiency and hydrogen consumption of the fuel cell system were calculated according to the three proposed power distribution methods (equivalent, Daisy-chain, and optimal method). As a result, the optimal power distribution method increases the efficiency of the fuel cell system and reduces hydrogen consumption. The more frequently the multi-stack fuel cell system is exposed to lower power levels, the greater the effectiveness of the optimal power distribution method.

A Study on Lightweight Block Cryptographic Algorithm Applicable to IoT Environment (IoT 환경에 적용 가능한 경량화 블록 암호알고리즘에 관한 연구)

  • Lee, Seon-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.1-7
    • /
    • 2018
  • The IoT environment provides an infinite variety of services using many different devices and networks. The development of the IoT environment is directly proportional to the level of security that can be provided. In some ways, lightweight cryptography is suitable for IoT environments, because it provides security, higher throughput, low power consumption and compactness. However, it has the limitation that it must form a new cryptosystem and be used within a limited resource range. Therefore, it is not the best solution for the IoT environment that requires diversification. Therefore, in order to overcome these disadvantages, this paper proposes a method suitable for the IoT environment, while using the existing block cipher algorithm, viz. the lightweight cipher algorithm, and keeping the existing system (viz. the sensing part and the server) almost unchanged. The proposed BCL architecture can perform encryption for various sensor devices in existing wire/wireless USNs (using) lightweight encryption. The proposed BCL architecture includes a pre/post-processing part in the existing block cipher algorithm, which allows various scattered devices to operate in a daisy chain network environment. This characteristic is optimal for the information security of distributed sensor systems and does not affect the neighboring network environment, even if hacking and cracking occur. Therefore, the BCL architecture proposed in the IoT environment can provide an optimal solution for the diversified IoT environment, because the existing block cryptographic algorithm, viz. the lightweight cryptographic algorithm, can be used.