• Title/Summary/Keyword: Daily forecasting

Search Result 315, Processing Time 0.023 seconds

Short-Term Load Forecasting Exponential Smoothoing in Consideration of T (온도를 고려한 지수평활에 의한 단기부하 예측)

  • 고희석;이태기;김현덕;이충식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.730-738
    • /
    • 1994
  • The major advantage of the short-term load forecasting technique using general exponential smoothing is high accuracy and operational simplicity, but it makes large forecasting error when the load changes repidly. The paper has presented new technique to improve those shortcomings, and according to forecasted the technique proved to be valid for two years. The structure of load model is time function which consists of daily-and temperature-deviation component. The average of standard percentage erro in daily forecasting for two years was 2.02%, and this forecasting technique has improved standard erro by 0.46%. As relative coefficient for daily and seasonal forecasting is 0.95 or more, this technique proved to be valid.

  • PDF

Daily peak load forecasting considering the load trend and temperature (수요경향과 온도를 고려한 1일 최대전력 수요예측)

  • 최낙훈;손광명;이태기
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.6
    • /
    • pp.35-42
    • /
    • 2001
  • Since daily peak load forecasted data are essential to economic operation and power monitor, the technique of accurate forecasting is needled. The chief advantage of forecasting technique using neural network and fuzzy theory is high accuracy and operative implicity but the loaming time is long, and it makes large forecasting error when the load changes rapidly. This paper has resented a new forecasting technique to improve those faults and the forecasting technique prove to be valid by forcasted results.

  • PDF

Development of Short-Term Load Forecasting Method by Analysis of Load Characteristics during Chuseok Holiday (추석 연휴 전력수요 특성 분석을 통한 단기전력 수요예측 기법 개발)

  • Kwon, Oh-Sung;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2215-2220
    • /
    • 2011
  • The accurate short-term load forecasting is essential for the efficient power system operation and the system marginal price decision of the electricity market. So far, errors of load forecasting for Chuseok Holiday are very big compared with forecasting errors for the other special days. In order to improve the accuracy of load forecasting for Chuseok Holiday, selection of input data, the daily normalized load patterns and load forecasting model are investigated. The efficient data selection and daily normalized load pattern based on fuzzy linear regression model is proposed. The proposed load forecasting method for Chuseok Holiday is tested in recent 5 years from 2006 to 2010, and improved the accuracy of the load forecasting compared with the former research.

Improvement of the Load Forecasting Accuracy by Reflecting the Operation Rates of Industries on the Consecutive Holidays (특수일 조업률 반영을 통한 전력수요예측 정확도 향상)

  • Lim, Nam-Sik;Lee, Sang-Joong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1115-1120
    • /
    • 2016
  • This paper presents the daily load forecasting for special days considering the rate of operation of industrial consumers. The authors analyzed the power consumption pattern for both the special and ordinary days according to the contract power classification of industrial consumers, and selected 400~600 specific consumers for which the rates of operation during special days are needed. Load forecasting for 2014 special days considering the rate of operation of industrial consumers showed a noticeable improvement on forecasting error of daily peak demand, which proved the effectiveness of the survey for the rates of operation during special days of industrial consumers.

An Improvement Algorithm of the Daily Peak Load Forecasting for Korean Thanksgiving Day and the Lunar New Year's Day (추석과 설날 연휴에 대한 전력수요예측 알고리즘 개선)

  • Ku, Bon-Suk;Baek, Young-Sik;Song , Kyung-Bin
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.10
    • /
    • pp.453-459
    • /
    • 2002
  • This paper proposes an improved algorithm of the daily peak load forecasting for Korean Thanksgiving Day and the Lunar New Year's day. So far, many studies on the short-term load forecasting have been made to improve the accuracy of the load forecasting. However, the large errors of the load forecasting occur i case of Korean Thanksgiving Day and the Lunar New Year's Day. In order to reduce the errors of the load forecasting, the fuzzy linear regression method is introduced and a good selection method of the past load pattern is presented. Test results show that the proposed algorithm improves the accuracy of the load forecasting.

An Improved Algorithm of the Daily Peak Load Forecasting fair the Holidays (특수일의 최대 전력수요예측 알고리즘 개선)

  • Song, Gyeong-Bin;Gu, Bon-Seok;Baek, Yeong-Sik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.3
    • /
    • pp.109-117
    • /
    • 2002
  • High accuracy of the load forecasting for power systems improves the security of the power system and generation cost. However, the forecasting problem is difficult to handle due to the nonlinear and the random-like behavior of system loads as well as weather conditions and variation of economical environments. So far. many studies on the problem have been made to improve the prediction accuracy using deterministic, stochastic, knowledge based and artificial neural net(ANN) method. In the conventional load forecasting method, the load forecasting maximum error occurred for the holidays on Saturday and Monday. In order to reduce the load forecasting error of the daily peak load for the holidays on Saturday and Monday, fuzzy concept and linear regression theory have been adopted into the load forecasting problem. The proposed algorithm shows its good accuracy that the average percentage errors are 2.11% in 1996 and 2.84% in 1997.

Short-Term Forecasting of City Gas Daily Demand (도시가스 일일수요의 단기예측)

  • Park, Jinsoo;Kim, Yun Bae;Jung, Chul Woo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.4
    • /
    • pp.247-252
    • /
    • 2013
  • Korea gas corporation (KOGAS) is responsible for the whole sale of natural gas in the domestic market. It is important to forecast the daily demand of city gas for supply and demand control, and delivery management. Since there is the autoregressive characteristic in the daily gas demand, we introduce a modified autoregressive model as the first step. The daily gas demand also has a close connection with the outdoor temperature. Accordingly, our second proposed model is a temperature-based model. Those two models, however, do not meet the requirement for forecasting performances. To produce acceptable forecasting performances, we develop a weighted average model which compounds the autoregressive model and the temperature model. To examine our proposed methods, the forecasting results are provided. We confirm that our method can forecast the daily city gas demand accurately with reasonable performances.

Daily Maximum Electric Load Forecasting for the Next 4 Weeks for Power System Maintenance and Operation (전력계통 유지보수 및 운영을 위한 향후 4주의 일 최대 전력수요예측)

  • Jung, Hyun-Woo;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1497-1502
    • /
    • 2014
  • Electric load forecasting is essential for stable electric power supply, efficient operation and management of power systems, and safe operation of power generation systems. The results are utilized in generator preventive maintenance planning and the systemization of power reserve management. Development and improvement of electric load forecasting model is necessary for power system maintenance and operation. This paper proposes daily maximum electric load forecasting methods for the next 4 weeks with a seasonal autoregressive integrated moving average model and an exponential smoothing model. According to the results of forecasting of daily maximum electric load forecasting for the next 4 weeks of March, April, November 2010~2012 using the constructed forecasting models, the seasonal autoregressive integrated moving average model showed an average error rate of 6,66%, 5.26%, 3.61% respectively and the exponential smoothing model showed an average error rate of 3.82%, 4.07%, 3.59% respectively.

Analysis of Chaos Characterization and Forecasting of Daily Streamflow (일 유량 자료의 카오스 특성 및 예측)

  • Wang, W.J.;Yoo, Y.H.;Lee, M.J.;Bae, Y.H.;Kim, H.S.
    • Journal of Wetlands Research
    • /
    • v.21 no.3
    • /
    • pp.236-243
    • /
    • 2019
  • Hydrologic time series has been analyzed and forecasted by using classical linear models. However, there is growing evidence of nonlinear structure in natural phenomena and hydrologic time series associated with their patterns and fluctuations. Therefore, the classical linear techniques for time series analysis and forecasting may not be appropriate for nonlinear processes. Daily streamflow series at St. Johns river near Cocoa, Florida, USA showed an interesting result of a low dimensional, nonlinear dynamical system but daily inflow at Soyang reservoir, South Korea showed stochastic property. Based on the chaotic dynamical characteristic, DVS (deterministic versus stochastic) algorithm is used for short-term forecasting, as well as for exploring the properties of the system. In addition to the use of DVS algorithm, a neural network scheme for the forecasting of the daily streamflow series can be used and the two techniques are compared in this study. As a result, the daily streamflow which has chaotic property showed much more accurate result in short term forecasting than stochastic data.

Development of Daily PV Power Forecasting Models using ELM (ELM을 이용한 일별 태양광발전량 예측모델 개발)

  • Lee, Chang-Sung;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.164-168
    • /
    • 2015
  • Due to the uncertainty of weather, it is difficult to construct an accurate forecasting model for daily PV power generation. It is very important work to know PV power in next day to manage power system. In this paper, correlation analysis between weather and power generation was carried out and daily PV power forecasting models based on Extreme Learning Machine(ELM) was presented. Performance of district ELM model was compared with single ELM model. The proposed method has been tested using actual data set measured in 2014.