• Title/Summary/Keyword: DPF Regeneration

Search Result 62, Processing Time 0.026 seconds

A study on control method of DPF regeneration according to operation characteristics of Light Tactical Vehicle (전술차량 운용 특성에 따른 DPF 재생 제어 개선방안 연구)

  • Kim, Seon-Jin;Park, Jin-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.689-695
    • /
    • 2018
  • This paper presents the means of controlling the regeneration of a diesel particulate filter (DPF) that is mounted on tactical vehicles to satisfy exhaust gas standards. The DPF captures particulate matter in the exhaust gas and combusts the captured particulate matter. This process is regeneration, which is essential to the normal performance of the DPF. Bad regeneration causes degradation of vehicle performance; worse, it can lead to a vehicle fire. DPF regeneration is performed by control logic. If the regeneration control logic does not properly reflect the operating characteristics of the vehicle, DPF regeneration may not occur. Consequently, it is very important to ensure the DPF operates properly by reflecting the operating characteristics of the tactical vehicle. This study analyzes the operational characteristics of a tactical vehicle and the DPF, and adds proper DPF regeneration control logic. Additionally, this study is intended to simultaneously improve the additional problems that may occur from operating under the added regeneration control logic.

Effect of DPF Regeneration on Emission Characteristics in Diesel Engines (DPF 재생이 경유자동차 배출특성에 미치는 영향)

  • Moon, Taeyoung;Son, Jihwan;Yun, Hyunjin;Hong, Heekyoung;Choi, Kwangho;Kim, Jeongsoo;Kim, Heekyoung
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.142-148
    • /
    • 2014
  • In this study, characteristics of gaseous pollutants and particulate matter were investigated on the condition of DPF regeneration and normal DPF condition. THC, CO, $CO_2$, NOx, and $CH_4$ were analyzed by MEXA-7200H and CVS-7100 respectively. Particulate Matter (PM) was measured by difference in weight of Membrane filter. Particle Number (PN) was measured by CPC analyzer. And Sulfate, Nitrate, Organic were measured by Aerosol Mass Spectrometer (AMS). As a result, gaseous pollutants and particulate matter were detected in higher concentration during DPF regeneration than normal DPF condition. And the PN increased by 94%, the fuel consumption was reduced by 29% on DPF generation process. Sulfate, Nitrate and Organic were undetectable level during normal DPF condition. But the highest concentration of Sulfate, Nitrate and Organic were measured as $100{\mu}g/m^3$, $20{\mu}g/m^3$ and $15{\mu}g/m^3$ respectively on DPF regeneration condition. VOCs concentrations (Benzene, Toluene, Ethylbenzene, Xylene) were analyzed by using PTR-MS. Benzene and Toluene emission have little or no change depending on DPF regeneration. But the Ethylbenzene and Xylene have comparatively low emissions on DPF regeneration.

Research on Post Injection for Diesel Particulate Filter Regeneration (DPF 재생을 위한 연료 후분사 전략에 대한 연구)

  • Choi, Minhoo;Yoon, Sungjun;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.87-95
    • /
    • 2017
  • Recently, as the interest in environmental issues have increased around the world, the regulation on vehicle exhaust have been tightened in each country. To satisfy such tightened exhaust regulation, automotive manufactures are forced to equipped Diesel Particulate Filter (DPF) at Diesel vehicles. If DPF is used for a long time, DPF regeneration should be performed. The objective of this study is to research on post injection for DPF regeneration. The result of the study was that it was desired that retarding post injection timing, lower load of engine and smaller the amount of main fuel injection, for DPF regeneration. Oil dilution was tended to increase as load was lower, amount of post injection was increased, and post injection timing was retarded.

The Performance Test on A Continuous Regeneration DPF in A HD Diesel Engine (대형디젤기관에 있어서 연속재생방식 매연저감장치 성능 테스트)

  • Baik, Doo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.788-792
    • /
    • 2006
  • The test was conducted on an 8000cc heavy-duty turbo-charged heavy-duty diesel engine on which continuous regeneration DPF was installed in order to investigate regeneration characteristics fur DPF and engine performance under conditions of standard (430ppm) or ultra low sulfur diesel (50ppm) and the results were compared with each other. Exhaust emissions, CO, HC, NOx, PM and soot were investigated carefully and tested under D-13 and D-3 modes.

  • PDF

A Study on PM Regeneration Characteristics of Diesel Passenger Vehicle with Passive Regeneration DPF System (자연재생방식 DPF시스템 부착 경유승용차량의 PM재생 특성 연구)

  • Lee, Jin-Wook;Cho, Gyu-Baek;Kim, Hong-Suk;Jeong, Young-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.188-194
    • /
    • 2007
  • New diesel engines equipped with common-rail injection systems and advanced engine management control allow drastic decreases in the production of particulate matters and nitrogen oxides with a significant advantage in terms of the fuel consumption and $CO_2$ emissions. Nevertheless, the contribution of exhaust gas after treatment in the ultra low emission vehicles conception has become unavoidable today. Recently the passive type DPF(Diesel Particulate Filter Trap) system for diesel passenger vehicle has been manufactured into mass production from a French automotive maker since the year of 2000. This passive DPF system fully relies on the catalytic effects from additives blended into the diesel fuel and additives injected into the DPF system. In this study, the effects of PM regeneration in the commercial diesel passenger vehicle with the passive type DPF system were investigated in chassis dynamometer CVS(constant volume sampler)-75 mode. As shown in this experimental results, the DPF regeneration was observed at temperature as low as $350^{\circ}C$. And the engine-controlled the DPF regeneration founded to be one of the most promising regeneration technologies. Moreover, the durability of this DPF system was evaluated with a season weather in terms of the differential pressure and exhaust gas temperature traces from a road test during the total mileage of 80,000km.

Numerical Analysis on the Characteristics of Temperature Distribution in an Active Regeneration DPF Type (강제 재생 방식 DPF 내부의 온도 분포 특성에 관한 수치해석)

  • Park, S.C.;Lee, H.S.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.55-61
    • /
    • 2011
  • This study analyzed on the characteristics of temperature distribution in an active regeneration DPF using computer simulation. In order to verify the boundary condition of analysis, results of temperature distribution in DPF are compared between experimental and computer simulation. Using this boundary condition, temperature distribution and filter's durability in DPF analyzed according to various operating conditions. The results of computational analysis are agreed well with experimental ones from the tendency of temperature distribution of axis and radius direction. The temperature increases and the axial temperature gradients in DPF according to velocity of exhaust gas are lowered as the high velocity of exhaust gas. But the temperature gradients of radius direction at exit side in DPF are grown as the high velocity of exhaust gas. The results according to inlet temperature of exhaust gas show that the increase ratios of temperature in DPF are grown as the high temperature of exhaust gas.

Uncontrolled Regeneration Characteristics of SiC DPFs using DPF Test Rig (DPF 테스트 리그를 이용한 SiC DPF의 이상연소 특성)

  • Oh, Kwang-Chul;Lee, Chun-Hwan;Cho, Taik-Dong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.80-86
    • /
    • 2008
  • Uncontrolled regeneration characteristics of two different type SiC DPFs(diesel particulate filters) were investigated by DPF test rig devised to facilitate DPF evaluation, especially for regeneration and MSL(maximum soot loading) test similar to engine dynamometer test. In order to estimate the limits of maximum filter temperature and temperature gradient causing filter fracture, such as crack or whitening, the temperature distributions inside the filter were measured by thermocouples. The maximum filter temperature was observed near the rear plane of central filter region due to heat accumulation by exothermic reaction of PM but the maximum temperature gradient occurred at the boundary of high filter temperature. These two parameters induced the different SiC DPFs to fracture with different modes, whitening and crack.

Effect of DPF Regeneration on the Nano Particle Emission of Diesel Passenger Vehicle (DPF 재생이 경유승용차의 미세입자 배출에 미치는 영향 연구)

  • Kwon, Sang-Il;Park, Yong-Hee;Kim, Jong-Choon;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.153-159
    • /
    • 2007
  • Nano-Particles are influenced on the environmental protection and human health. The relationships between transient vehicle operation and nano-particle emissions are not well-known, especially for diesel passenger vehicles with DPF. In this study, a diesel passenger vehicle was measured on condition of DPF regeneration and no regeneration on a chassis dynamometer test bench. The particulate matter (PM) emission from this vehicle was measured by its number, size and mass measurement. The mass of the total PM was evaluated with the standard gravimetric measurement method while the total number and size concentrations were measured on a NEDC driving cycle using Condensation Particle Counter (CPC) and EEPS. Total number concentration by CPC was $1.5{\times}10^{1l}N/km$, which was 20% of result by EEPS. This means about 80% of total particle emission is consist of volatile and small-sized particles(<22nm). During regeneration, particle emission was $6.2{\times}10^{12}N/km$, was emitted 400 times compared with the emission before regeneration. As for the particle size of $22{\sim}100nm$ was emitted mainly, showing peak value of near 40nm in size. This means regeneration decreased the mean size of particles. Regarding regeneration, PM showed no change while the particle number showed about 6 times difference between before and after regeneration. It seems that the regeneration influences on particle number emissions are related to DPF-fill state and filtration efficiency.

A Study on the Characteristics of DPF Regeneration Process of Peugeot 406 Vehicle Engine (Peugeot 406차량 엔진의 DPF 재생과정 특성 분석)

  • Kim, Chang-Il;Baek, Choong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.96-102
    • /
    • 2004
  • The diesel particulate filter(DPF) is effective for particulate removal from diesel engine under a variety of conditions, and then the regeneration strategies is very important in the aspects of engine fuel consumption and engine durability. This paper addresses the changes of Peugeot 406 vehicle engine parameters(fuel injection timing, period, rail pressure, emissions exhaust temperature so on) during DPF regeneration. additionally, checked the soot loading mass with mileage and the change of fuel consumption and performance with ash accumulation.

Basic Study on the Flame Stability of Burner for Regeneration of Diesel Particulate Filter in Engine Exhaust Gas (DPF 재생용 버너의 엔진 배기 중에서의 화염 안정성 구현을 위한 기초 연구)

  • Shim, Sung-Hoon;Jeong, Sang-Hyun;Hong, Won-Seok
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.4
    • /
    • pp.10-17
    • /
    • 2005
  • Sustaining of flame stability of the burner installed in Dielsel exhaust pipe is very difficult because of steep fluctuation of pressure and flow rate. A burner for DPF (Diesel Particulate Filter) which clogged by collected soot regeneration has been made of metal fiber for the purpose of realization of flame stability even in unfavorable condition of Diesel engine exhaust. Flame stability of the metal fiber burner has been investigated in various condition of engine operation. It has been identified that metal fiber burner with liner which has swirl guide vane presents excellent flame stability even in the higher engine revolutions than 3000rpm and sudden variation. The results offer the possibility of development of full flow burner system for DPF regeneration.

  • PDF