• 제목/요약/키워드: DPF, Diesel Particulate Filter

검색결과 120건 처리시간 0.025초

디젤입자상물질 여과장치의 배기저감성능 효과 분석 (An Investigation of the Effect of Diesel Particulate Filter for Heavy-duty Diesel Engine on Emission Reduction)

  • 박용희;신대윤
    • 한국환경보건학회지
    • /
    • 제33권1호
    • /
    • pp.36-42
    • /
    • 2007
  • Diesel PM can be controlled using Diesel Particulate Filter, which can effectively reduce the level of soot emissions to ambient background levels. In the Heavy Duty Diesel area, the Continuously Regeneration trap has been widely applied in the retrofit market. As the Special act for the improvement of air quality in the capital area, the retrofit program for DPF to used diesel vehicle has progressed favorably and there are currently over 1,000 of these DPF in use in retrofit applications in korea. These DPF comprise a specially formulated Diesel Oxidation Catalyst upstream of a DPF. The $NO_2$ generated by the DOC is used to combust the carbon collected in the DPF at low temperature. To certificate DPF device that is suitable to domestic circumstances, it is necessary to evaluate exactly the DPF devices according to the regulation of DPF certificate test procedure for retrofit(ministry of environment(MOE) announcement NO. 2005-16). To do so the understand of that regulation like the standard of PM reduction rate is needed. In this study the test procedure including test cycle and BPT test condition was examined and also the test result for specific DPF was analyzed. In every test like field test, PM reduction efficiency test and seoul-10 mode test, no defect could be showed.

DPF 성능 평가를 위한 Dump Combustor의 활용 (The Application of Dump Combustor for Evaluation of DPF(Diesel Particulate Filter) System)

  • 남연우;이원남;오광철;이춘범
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.98-103
    • /
    • 2007
  • The number of vehicles employing diesel engines is rapidly rising. Accompanying this trend, application of an after-treatment system is strictly required as a result of reinforced exhaust regulations. The Diesel Particulate Filter (DPF) system is considered as the most efficient method to reduce particulate matter (PM), but the improvement of a regeneration performance at any engine operation point presents a considerable challenge by itself. Temperature, gas compostion and flow rate of exhaust gas are important parameters in DPF evaluation, especially regeneration process. Engine dynamometer and degment tester are generally used in DPF evaluation so far. But these test method couldn't reveal the effect of various parameters on real DPF, such as O2 concentration, amount of soot and exhaust gas temperature. This research has studied the possibility using dump combustor that used to take an approach lean premixed combustion in gas turbine for a DPF power and optimized. It is possible that utilize the system as DOC (Diesel Oxidation Catalyst) and SCR(Selective Catalytic Reduction) assessments test as well as DPF evaluation

  • PDF

디젤 매연 필터에서 퇴적되는 입자상 물질의 퇴적량 예측 (Prediction of Particulate Matter Being Accumulated in a Diesel Particulate Filter)

  • 유준;전제록;홍현준
    • 한국자동차공학회논문집
    • /
    • 제17권3호
    • /
    • pp.29-34
    • /
    • 2009
  • Diesel particulate filter (DPF) has been developed to optimize engine out emission, especially particulate matter (PM). One of the main important factors for developing the DPF is estimation of soot mass being accumulated inside the DPF. Evaluation of pressure drop over the DPF is a simple way to estimate the accumulated soot mass but its accuracy is known to be limited to certain vehicle operating conditions. The method to compensate drawback is adoption of integrating time history of the engine out PM and burning soot. Present study demonstrates current status of the soot estimation methods including the results from the engine test benches and vehicles.

금속 DPF를 이용한 입자상물질의 저감효율에 관한 연구 (PM Reduction Efficiency using Metal Type DPF)

  • 나완용
    • 한국자동차공학회논문집
    • /
    • 제21권5호
    • /
    • pp.176-180
    • /
    • 2013
  • After-treatment apparatus ceramic DPF (diesel particulate filter) have been applied to reduce harmful particulate matters(PM) among emissions from diesel engines so far, but they are easy to be fragile and weak in thermal shock. This research aims to investigate a metal type filter which is superior in mechanical strength and heat conduction rate and is beneficial economically in manufacturing. Basic performance of metal DPF such asloading test, temperature gradient test, thermal shock test, heat resistant test and back pressure was carried out. And then their experimental data provided key informations in designing and manufacturing such as detailed structures of metal mesh filter. Also diesel engine and vehicle of 2957cc displacement was tested under lug-down 3 mode and CVS-75 mode. PM reduction efficiency was 54.5% using metal DPF without loss of performance and fuel consumption.

연속재생 DPF의 재생 성능에 미치는 차량 운행패턴의 영향 (Influence of Driving Pattern on Regeneration Performance of Continuously Regenerating Diesel Particulate Filter)

  • 황진우;이창식
    • 대한기계학회논문집B
    • /
    • 제33권5호
    • /
    • pp.358-364
    • /
    • 2009
  • This paper is to investigate the influence of driving patterns of slow and high speed vehicles on the performance of continuously regenerating diesel particulate filter(DPF) system matched with operating conditions in field application. The DPF performance test for field application was carried out for two identical DPFs installed to slow and high speed vehicles. A slow speed vehicle was selected among local buses which have driving patterns to repeat running and stop frequently, while a high speed vehicle was prepared to have long route of high speed over 60km/h like inter-city buses. In this test, the regeneration performance on the DPF of slow speed vehicle deteriorated because of high soot load index(SLI) in spite of same balance point temperature(BPT) distribution for high speed vehicle. The DPF of slow speed vehicle melted in the end because the rapid increase of back pressure caused high temperature over $1200^{\circ}C$ in the ceramic wall of DPF. The PM components like ash collected to the filter in the DPF were analyzed in order to investigate the cause of the defect and provide an operation performance of DPF system. In the result of the analysis, high levels of lubrication oil ash(Ca, Mg, P, Zn) were detected.

매연포집필터 과열로 발생한 디젤승용차화재 원인의 분석 (Analysis of a Car Fire Case Caused by the Overheating of a Diesel Particulate Filter)

  • 이의평
    • 한국화재소방학회논문지
    • /
    • 제31권1호
    • /
    • pp.89-97
    • /
    • 2017
  • 본 연구에서는 서비스센터에서 정비를 받고 출고한 날로부터 5일 후 터널 주행 중에 발생한 디젤승용차 화재 사례를 조사분석하였다. 조사분석한 결과, 배기구 내부에 흰색 이물질이 다량 부착되어 있었고, 배기관의 중간에 설치된 diesel particulate filter (DPF) 위쪽의 차열재가 용융 및 소실되어 있었고, DPF 위쪽의 차실 내부 금속재 바닥이 천공되어 금속재 바닥 위에 놓인 고무매트가 연소된 케이스이었다. 그리고 DPF 앞쪽의 배기관에는 과열흔적이 없고 DPF부터 배기구까지의 배기관에 과열흔적이 있는 특이점이 있었다. 이러한 특이점들은 DPF가 과열되고 DPF에서 발화된 경우에만 나타나므로 이 승용차화재는 DPF 내부 과열에 의해 발생한 것으로 분석할 수 있었다. 그리고 이 승용차화재조사를 통해 디젤승용차 화재원인조사 과정에서 배기구 내부에서 흰색 이물질이 확인되는 경우에는 DPF를 분리하여 DPF 내부의 손상을 조사하여 화재원인을 판정하여야 함을 알 수 있었다.

분할형 전기히터가 장착된 디젤 매연 필터 내의 온도분포에 관한 연구 (Study on Temperature Distributions in a Diesel Particulate Filter Equipped with Partitioned Electric Heaters)

  • 박성천;이충훈;이수룡
    • 한국연소학회지
    • /
    • 제15권3호
    • /
    • pp.67-73
    • /
    • 2010
  • The temperature distribution of diesel particulate filter with five partitioned electric heaters is numerically analyzed to investigate the condition of regenerating ceramic filter. The commercial code STAR-$CCM+^{(R)}$ is utilized to simulate multi-dimensional steady hot air flow in DPF. In order to verify the computational results, thermocouples are used to measure the temperature distribution in DPF. Computational results agree well with experimental ones. The results show that the maximum temperature in DPF is lowered as the mass flow rate of exhaust gas increases, which means that the more power in heater will be necessary as the engine speed increases. Compared with heater placed at center, heater at circumference has the higher maximum temperature in DPF. The maldistribution of flow field in front of heater has the main influence on the temperature distribution in DPF.

Peugeot 607 경유승용차의 매연여과장치 특성 분석 (A Study on the Characteristics of DPF System of Peugeot 607 Diesel Passenger Car)

  • 김홍석;김진현;신동길;조규백;정용일;김강출;이영재
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.66-74
    • /
    • 2004
  • DPF technology has been considered as one of the most effective methods for reducing diesel particulate emission. PSA Peugeot Citroen introduced the DPF equipped diesel passenger car, Peugeot 607 HDI Sedan, in 2000 for the first time in the world, in which SiC filter, an oxidation catalyst, cerium based fuel born catalyst and post-injection technology were used for PM regeneration. In the present study, the characteristics of the Peugeot 607 DPF system were studied on chassis dynamometer and real road driving conditions. The change of emissions and fuel economy during 80,000km operation were also tested. Additionally, ash contents accumulated in the DPF filter was analyzed and particle size distributions was investigated after running of 80,000km.

디젤 매연여과기 (DPF) 내에서의 음향전파 (Sound Propagation through the Diesel Particulate Filter (DPF))

  • 최원용;이정권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계 학술대회논문집(수송기계편)
    • /
    • pp.152-155
    • /
    • 2005
  • Diesel particulate filter (DPF) is comprised of a number of capillary tubes enclosed by porous ceramic wails, shaped like a plugged duct. Hot gas flows through the DPF along with the exhaust noise from Diesel engine. Based on previous works on the sound propagation through DPF, in this study, losses at entrance, exit, and ceramic walls are considered and the gradients in temperature and flow velocity are considered. Transfer matrix at entrance, monolith, and exit parts are obtained by employing the segmental approach in analyzing the sound propagation through DPF. The predicted transmission loss agrees very well with the empirical one, which is measured by the improved method with correction terms.

  • PDF

DPF 재생을 위한 연료 후분사 전략에 대한 연구 (Research on Post Injection for Diesel Particulate Filter Regeneration)

  • 최민후;윤성준;박성욱
    • 한국분무공학회지
    • /
    • 제22권2호
    • /
    • pp.87-95
    • /
    • 2017
  • Recently, as the interest in environmental issues have increased around the world, the regulation on vehicle exhaust have been tightened in each country. To satisfy such tightened exhaust regulation, automotive manufactures are forced to equipped Diesel Particulate Filter (DPF) at Diesel vehicles. If DPF is used for a long time, DPF regeneration should be performed. The objective of this study is to research on post injection for DPF regeneration. The result of the study was that it was desired that retarding post injection timing, lower load of engine and smaller the amount of main fuel injection, for DPF regeneration. Oil dilution was tended to increase as load was lower, amount of post injection was increased, and post injection timing was retarded.