• Title/Summary/Keyword: DPF, 매연여과장치

Search Result 42, Processing Time 0.021 seconds

A Study on the Flow Characteristic of the Diesel Engine DPF (디젤엔진용 매연여과장치 내부유동 특성 연구)

  • Go, Hyun-Sun;Jung, Chan-Gyu;Lee, Heang-Nam
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.109-117
    • /
    • 2012
  • This paper addresses influence on the flow field by varying the length of DPF Inlet pipe in 5 ways. Numerical analysis is carried out by using PIV and commercial code and as a result, PIV and commercial code shows correlation correspond to 87%. Furthermore, in the same velocity condition, as stable and high pressure value is shown when the Inlet pipe length is 20mm, particulate filtering rate can be increased.

Effect of Particulate Matter and Ash Amount on Pressure Drop and Flow Uniformity of Diesel Particulate Filter Reduction System (입자상물질과 Ash양이 디젤매연여과장치 내의 배압 및 유동균일도에 미치는 영향)

  • Kim, YunJi;Han, DanBee;Seo, TaeWon;Oh, KwangChul;Baek, YoungSoon
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.22-29
    • /
    • 2020
  • Recently, as the fine dust is increased and the emission regulations of diesel engines have been tightened, interest in diesel soot filtration devices has rapidly increased. There is specifically a demand for the technological development of higher diesel exhaust gas after-treatment device efficiency. As part of this, many studies were conducted to increase exhaust gas treatment efficiency by improving the flow uniformity of the exhaust gas in the diesel particulate filter (DPF) and reducing the pressure drop between the inlet and the outlet of DPF. In this study, the effects of pressure drop by the flow rate and temperature of exhaust gas, DPF I/O ratio, Ash, and PM amount in diesel reduction device were simulated via a 12" diameter DPF and diesel oxidation catalyst (DOC) using ANSYS Fluent. As the flow rate and temperature decreased, the pressure drop decreased, whereas the PM amount affected the pressure drop more than the ash amount and the pressure drop was lower in anisotropic DPF than isotropic DPF. In the case of DPF flow uniformity, it was constant regardless of the various variables of DPF. In ESC and ETC conditions, the filtration efficiency for PM was similar regardless of anisotropic and isotropic DPF, but the filtration efficiency for PN (particle number) was higher in anisotropic DPF than isotropic DPF.

Exhaust Emission Characteristics from Heavy-duty Diesel Engine applicable to Prime Propulsion Engine for Marine Vessels (선박 주 추진기관으로 사용가능한 대형 디젤엔진의 배기가스 특성 분석)

  • Lee, Hyung-Min;Park, Rang-Eun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.484-489
    • /
    • 2012
  • The objective of this work presented here was focused on analysis of particulate matter and nitrogen oxide characteristics in ESC test mode from heavy-duty diesel engine installed on-road vehicles applicable to prime propulsion engine for marine vessels. The authors confirmed that a large quantity particulate matter were emitted in high power density condition, nitrogen oxide characteristics were dependent on exhaust gas temperature. Particulate matters were reduced by 1/100~1/1,000 times in post DPF with test modes but filtration efficiency was decreased in the engine power fluctuation. In the case of the high speed and power condition, the exhaust level of particulate matters was increased according to increment of temperature of gas flowing into DPF. The orders of magnitude for particle concentration levels from the analysis of size distribution of particulate matters of test engine was different. Both emitting nano-sized particles below 100nm regardless of DPF and non-DPF.

A CFD Analysis on DPF for the Removal of PM from the Emission of Diesel Vehicle (디젤차량 배기가스의 PM 제거에 관한 매연여과장치 전산해석)

  • Yeom, Gyuin;Han, Danbee;Nam, Seungha;Baek, Youngsoon
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.301-306
    • /
    • 2018
  • Recently, due to the increase in the fine dust, regulations on PM generated from diesel cars are strengthened. There is a growing interest in diesel particulate filters (DPFs), a post-treatment device that removes exhaust gases from diesel vehicles. Therefore, one of the enhancements of the DPF efficiency is to reduce the pressure drop in the DPF, thereby increasing the efficiency of the filter and regeneration. In this study, the effect of cell density, channel shape, wall thickness, and inlet channel ratio of 5.66" SiC and Cordierite DPF on the pressure drop in DPF was investigated using ANSYS FLUENT simulator. As a result of the experiment, the pressure drop was smaller at 300 CPSI than 200 CPSI, and the anisotropy and O / S cell showed less than Isotropy by pressure drop of about 1,000 Pa. As the porosity increased by 10% the pressure drop was reduced by about 300 Pa and as the wall thickness increased by 0.05 mm, the pressure drop was increased by about 500 Pa.

Study on Estimation of PM Mass in DPF from Pressure Drop in 3L Diesel Engine (3L급 디젤엔진의 배압이용 DPF 매연포집량 예측에 대한 연구)

  • Kim, Hong-Suk;Lee, Jin-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.499-504
    • /
    • 2010
  • It is important to determine the exact soot mass in a DPF system in order to control the timing of PM regeneration. The soot mass accumulated in a filter can be estimated from the pressure drop in the filter and the exhaust gas flow rates. In this study, the soot index is defined as the pressure drop in the DPF divided by the pressure drop in a DOC. An effective signal processing method for determining the soot index is proposed; the results yielded by this method indicate good correlation between the soot index and the amount of soot loaded into the filter for both steady-state and transient-state operating conditions in a 3L diesel engine for passenger vehicles.

A Study on the Characteristics of DPF System of Peugeot 607 Diesel Passenger Car (Peugeot 607 경유승용차의 매연여과장치 특성 분석)

  • 김홍석;김진현;신동길;조규백;정용일;김강출;이영재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.66-74
    • /
    • 2004
  • DPF technology has been considered as one of the most effective methods for reducing diesel particulate emission. PSA Peugeot Citroen introduced the DPF equipped diesel passenger car, Peugeot 607 HDI Sedan, in 2000 for the first time in the world, in which SiC filter, an oxidation catalyst, cerium based fuel born catalyst and post-injection technology were used for PM regeneration. In the present study, the characteristics of the Peugeot 607 DPF system were studied on chassis dynamometer and real road driving conditions. The change of emissions and fuel economy during 80,000km operation were also tested. Additionally, ash contents accumulated in the DPF filter was analyzed and particle size distributions was investigated after running of 80,000km.

A Study on the PM Oxidation Characteristics of Electrical Heater DPF System (전기히터방식 매연여과장치의 PM 산화 특성에 관한 연구)

  • Ham, Yun-Young;Kim, Dae-Ha;Kim, Kyung-Woon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.183-190
    • /
    • 2006
  • For continuously regenerative PM collecting system which adopted thermally stable SiC DPF and electrical heater which was placed upstream of the filter and driven by well constructed control logic, PM oxidation characteristics were investigated varying air flow rate, amounts of PM accumulated on the DPF and filter inlet temperature in order to get optimized PM regeneration performance. This study showed that the operating condition of air flow rate 70 lpm, high PM loading around 30g and filter inlet temperature $700^{\circ}C$ with heat insulation was effective in achieving high regeneration efficiency. Also, in this condition, we could decrease the electric energy consumption by reducing the regeneration time.

Measurement of Flow Velocity Distribution at Inlet and Exit of Diesel Particulate Filter (디젤 엔진 매연여과장치 입.출구에서의 유속 분포 측정)

  • Lee, Choong-Hoon;Choi, Ung;Bae, Sang-Hong;Lee, Su-Ryong
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.3 s.40
    • /
    • pp.343-349
    • /
    • 2007
  • The flow velocity distribution at inlet and exit of a DPF was measured using a Pitot tube and 2-D positioning equipment. An adaptor which was designed for accessing the Pitot tube probe into inlet of the DPF was fabricated with inlet flange of the DPF. The Pitot tube which was mounted in the 2-D positioning machine could access to the inlet of the DPF through the rectangular window of the adaptor. Automation of the velocity measurement at the inlet and exit of the DPF was effectively achieved and measuring time was reduced drastically. The flow velocity distribution at the inlet of the DPF showed parabola shape with maximum velocity near to the center of the DPF, as expected. The velocity distribution at the exit of the DPF showed crown shape, that is, the flow velocity distribution near to the center of the DPF is lower than that at surrounded peripheral region of the DPF.

A Study on Regeneration Characteristics in DPF(1) (매연여과장치의 재생특성에 관한 연구(1))

  • Lee, B.H.;Lee, S.J.;Choi, G.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.72-79
    • /
    • 1998
  • The goals of this research are to understand the regeneration characteristics in diesel particulate filter(DPF) using the cerium additive and throttling. The effects of throttling duration and spring tension of throttling valve were studied. Measurements were made on a 6 cylinder direct injection diesel engine and included pressure drop, filter inlet temperature, oxygen concentrations, and torque. The major conclusions of this work include; (i) the pressure drop is increased with increase of the engine load and the engine speed; (ii) the inlet temperature of the filter is reached $350^{\circ}C$ with certain engine operating condition which leads to sufficient temperature to regenerate with additive; and (iii) oxygen concentrations in the filter and engine torque during throttling operation are decreased by 2 percent and 36 percent, respectively, which are not critical about regeneration and vehicle operation.

  • PDF