• Title/Summary/Keyword: DOA 추정

Search Result 105, Processing Time 0.037 seconds

A Study on Adaptive Processing of Digital Receiver for Adaptive Array Antenna (어댑티브 어레이 안테나용 디지털 수신기의 적응처리에 관한 연구)

  • 민경식;박철근
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.879-885
    • /
    • 2004
  • This paper describes an adaptive signal processing of digital receiver with digital down convertor(DDC). DDC is composed of numerically controlled oscillator(NCO) and digital low pass filler and the received signal is processed by numerical algorithm. The simulation results of digital receiver using the passband sampling technique are presented and we confirmed that the received low IF signal is converted to zero IF by numerically processed DDC. Direction of arrival(DOA) estimation technique using multiple signal classification(MUSIC) algorithm with high resolution is also discussed. We knew that an accurate resolution of DOA depends on the input sampling numbers and antenna element numbers.

Forward/Backward First Order Statistics Algorithm for the Estimation of DOA in a Multipath Environment (다중경로 환경에서 DOA를 추정하기 위한 전후방 일차 평균 알고리즘)

  • 김한수;임준석;성굉모
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.8
    • /
    • pp.64-67
    • /
    • 1998
  • 여러 해 동안 많은 연구자들에 의해서 코히런트한 간섭신호가 있는 환경에서 신호 의 도래각을 추정하는 방법에 대한 연구가 진행 되어왔다. 이런 방법들은 대부분 공간 평활 (Spatial Smoothing)류의 방법을 사용하고 있으나 Pillai에 의해서 각 센서에 들어오는 신호 의 평균을 이용한 방법이 제안되었다. 이 방법에서는 특별히 복소수의 입력에 대해서는 대 칭형 배열을 사용하도록 했기 때문에 실수 입력을 다룰 때 보다 약 2배의 센서 개수가 필요 하다[S.U.Pillai,Array Signal Processing,Springer-Verlang New York, 1989]. 본 논문에서는 Pillai의 방법을 사용할 때 복소수 입력에서도 실수 입력의 경우와 같은 개수의 센서를 사용 하는 방법을 제안한다.

  • PDF

Speech source estimation using AMDF (AMDF를 이용한 화자위치 추정)

  • 송도훈
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.193-196
    • /
    • 1998
  • 본 연구에서는 원격 화상회의 시스템 등에서 Camera를 자동적으로 제어하기 위해 화자의 음성신호를 4개의 마이크로폰 배열(Microphone Array)로 수음하여 그 신호에 의해 화자의 위치를 추정한다. 마이크로폰으로 수음한 음성신호의 TDE(Time Delay Estimation)를 계산할 때 그 연산량을 감소시키기 위해 AMDF 알고리즘을 사용한다. 각 마이크로폰 출력신호에 대해 AMDF 알고리즘으로 시간지연을 구하고 DOA(Direction of Arrival)를 계산한다. 그리고 다시 공간 기하계산을 통해 공간내 화자의 위치를 추정한다. 시험 신호로써 음성신호 '아'음을 사용한 수치 시뮬레이션과 반사음이 존재하는 일반 강의실에서 아나운서가 발성하는 음을 사용하여 AMDF 알고리즘을 이용한 화자위치 추정의 정확도를 조사하였다.

  • PDF

Performance Analysis of DCMP and ZF based on Spatial Channel Response Estimation by ESPRIT (ESPRIT에 의한 공간 채널응답 추정치에 기초를 둔 방향구속 전력 최소화법과 제로포싱 알고리즘의 성능평가)

  • Jeong, Jung-Sik;Yim, Jeong-Bin;Ahn, Young-Sup
    • Journal of Navigation and Port Research
    • /
    • v.26 no.5
    • /
    • pp.543-548
    • /
    • 2002
  • It has been known that the DCMP(Directionally Constrained Minimization of Power) and the ZF(Zero Forcing) can improve the SINR performance of an array antenna system by using spatial signature of wireless channel. This paper analyzes the performance of DCMP and ZF in multiple scattering environments. To obtain the spatial signature of wireless channel. both DOA(Directional of Arrival) and AS(Angular spread) of the received signals were estimated by using ESPRIT. The performance of the DCMP and the ZF was analyzed theoretically. By computer simulation of SINR performance was evaluated.

A Decorrelation Technique for Direction-of-Arrival Estimation of Coherent Signals (Coherent 신호의 입사방향 추정을 위한 상관관계 제거 기법)

  • Park, Geun-Ho;Shin, Jong-Woo;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.95-104
    • /
    • 2016
  • Subspace-based direction-of-arrival (DOA) estimation algorithms have a difficulty in dealing with coherent signals caused by multi-path environment. As one of attempts to solve this problem, a spatial differencing method is known to be useful for not only estimating DOAs of the coherent signals but also improving the number of resolvable wavefronts even more than the number of antenna elements. However, since the conventional spatial differencing method uses only the partial statistics of the observed data, this method suffers from the performance degradation in estimation accuracy caused by the residual correlation between the uncorrelated signals. To cope with this problem, in this paper, a generalized spatial differencing method is proposed. Unlike the conventional method, the proposed method utilizes the entire statistics of the received signals. Therefore, the additional performance enhancement in both estimation accuracy and the number of resolvable wavefronts can be achieved. The performance analyses with computer simulations show that the proposed method outperforms the conventional method in terms of the estimation accuracy and the number of resolvable wavefronts.

Nonnegative Matrix Factorization Based Direction-of-Arrival Estimation of Multiple Sound Sources Using Dual Microphone Array (이중 마이크로폰을 이용한 비음수 행렬분해 기반 다중음원 도래각 예측)

  • Jeon, Kwang Myung;Kim, Hong Kook;Yu, Seung Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.123-129
    • /
    • 2017
  • This paper proposes a new nonnegative matrix factorization (NMF) based direction-of-arrival (DOA) estimation method for multiple sound sources using a dual microphone array. First of all, sound signals coming from the dual microphone array are segmented into consecutive analysis frames, and a steered-response power phase transform (SRP-PHAT) beamformer is applied to each frame so that stereo signals of each frame are represented in a time-direction domain. The time-direction outputs of SRP-PHAT are stored for a pre-defined number of frames, which is referred to as a time-direction block. Next, In order to estimate DOAs robust to noise, each time-direction block is normalized along the time by using a block subtraction technique. After that, an unsupervised NMF method is applied to the normalized time-direction block in order to cluster the directions of each sound source in a multiple sound source environments. In particular, the activation and basis matrices are used to estimate the number of sound sources and their DOAs, respectively. The DOA estimation performance of the proposed method is evaluated by measuring a mean absolute error (MAE) and the standard deviation of errors between the oracle and estimated DOAs under a three source condition, where the sources are located in [$-35{\circ}$, 5m], [$12{\circ}$, 4m], and [$38{\circ}$, 4.m] from the dual microphone array. It is shown from the experiment that the proposed method could relatively reduce MAE by 56.83%, compared to a conventional SRP-PHAT based DOA estimation method.

Matrix Pencil Method using Fourth Order Cumulant (4차 Cumulant를 이용한 Matrix Pencil Method)

  • Jang Woo-Jin;Koh Jin-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.87-92
    • /
    • 2006
  • In array signal processing, high order statistics can be used to estimate parameters from signal of sums of complex exponential. This paper presents a high order Matrix Pencil method(MPM) using the fourth order cumulant. Since the fourth order cumulant can suppress the Gaussian noise, the response of MPM has better noise immunity than the conventional approaches. We successfully formulate the high order MPM with all the benefits of MPM along with higher accuracy. In the numerical simulations we demonstrated that the proposed method with forth order cumulant has better resolution to find degree of arrival(DOA) in the presence of the Gaussian noise.

Average Internal Loop-back Antenna Calibration Method for Array Antenna Systems (배열안테나 시스템의 평균 내부순환 안테나 교정 방법)

  • Lee, Il-Shin;Kim, Hyun-Su;Lee, Hong-Won;Chung, Jae-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2A
    • /
    • pp.139-146
    • /
    • 2009
  • This paper presents an average internal loop-back antenna calibration method for array antenna in TDD(Time Division Duplex) systems. The proposed method calibrates the amplitude and the phase of RF systems using into mal coupler and switches without aids of external calibration systems. The average calibration scheme of the proposed method also increases reliability of calibration performance. Computer simulation demonstrates that the proposed method corrects beamforming angles of DOA estimation algorithm and BER performance in transmit power allocation scheme.

Enhanced Resolution of Spatially Close Incoherent Sources using Virtually Expanded Arrays (가상 확장된 배열 안테나를 이용한 근접 입사신호의 분해능 향상 기법)

  • Kim, Young-Su;Kang, Heung-Yong;Kim, Chang-Joo
    • Journal of Advanced Navigation Technology
    • /
    • v.6 no.3
    • /
    • pp.181-187
    • /
    • 2002
  • In this paper, we propose a resolution enhancement method for estimating direction-of-arrival(DOA) of narrowband incoherent signals incident on a general array. The resolution of DOA algorithm is dependent on the aperture size of antenna array. But it is very impractical to increase the physical size of antenna array in real environment. We propose the method that improves resolution performance by virtually expanding the sensor spacing of original antenna array and then averaging the spatial spectrum of each virtual array which has a different aperture size. Superior resolution capabilities achieved with this method are shown by simulation results in comparison with the standard MUSIC for incoherent signals incident on a uniform circular array.

  • PDF