• Title/Summary/Keyword: DNase

Search Result 122, Processing Time 0.031 seconds

Reorganization of Chromatin Conformation from an Active to an Inactive State After Cessation of Transcription

  • Lee, Myeong-Sok
    • Journal of Microbiology
    • /
    • v.34 no.1
    • /
    • pp.54-60
    • /
    • 1996
  • Taking advantage of the heat inducible HSP82 gene in yeast, chromatin structure after transcription cessation was investigated. Alteration of chromating conformation within the HSP82 gene transcription unit into an active state has been shown to correlate with its transcriptional induction. It was thus of interest to examine whether the active chromatin state within the HSP82 mRNA analysis, the gene ceased its transcription within a few hours of cultivation at a normal condition after heat induction. In this condition, an active chromatin conformation in the HSP82 gene body was changed into an inactie state which was revealed by DNase I resistance and by typical nucleosomal cutting periodicity in the corresponding chromatin. These results thus ruled out the possibility of a long-term maintenance of the DNase I sensitive chromatin after transcription cessation. DNA replication may be a critical event for the chromatin reprogramming.

  • PDF

A Simple Method for Elimination of False Positive Results in RT-PCR

  • Martel, Fatima;Grundemann, Dirk;Schomig, Edgar
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.248-250
    • /
    • 2002
  • Discrimination between the amplification of mRNA and contaminating genomic DNA is a common problem when performing a reverse transcriptase-polymerase chain reaction (RT-PCR). Even after treatment of the samples with DNAse, it is possible that negative controls (samples in which no reverse transcriptase was added) will give positive results. This indicates that there was amplification of DNA, which was not generated during the reverse transcriptase step. The possibility exists that Taq DNA polymerase acts as a reverse transcriptase, generating cDNA from RNA during the PCR step. In order to test this hypothesis, we incubated samples with a DNAse-free RNAse after the cDNA synthesis. Comparison of the results that were obtained from these samples (incubated with or without DNAse-free RNAse) confirms that the reverse transcriptase activity of Taq DNA polymerase I is a possible source of false positive results when performing RT-PCR from intronless genes. Moreover, we describe here a simple and rapid method to overcome the false positive results that originate by this activity of Taq polymerase.

Formation and Dispersion of Mycelial Pellets of Streptomyces coelicolor A3(2)

  • Kim, Yul-Min;Kim, Jae-heon
    • Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.64-67
    • /
    • 2004
  • The pellets from a culture of Streptomyces coelicolor A3(2) that were submerged shaken were disintegrated into numerous hyphal fragments by DNase treatment. The pellets were increasingly dispersed by hyaluronidase treatment, and mycelial fragments were easily detached from the pellets. The submerged mycelium grew by forming complexes with calcium phosphate precipitates or kaolin, a soil particle. Therefore, the pellet formation of Streptomyces coelicolor A3(2) can be considered a biofilm formation, including the participation of adhesive extracellular polymers and the insoluble substrates.

DNA Binding Specificity of Proteus mirabilis Transcription Regulator (Proteus mirabilis 전사 조절 단백질의 DNA 결합 특성)

  • Gang, Jong-Back
    • Korean Journal of Microbiology
    • /
    • v.47 no.2
    • /
    • pp.158-162
    • /
    • 2011
  • Amino acid sequence alignment shows that $\underline{P}$roteus $\underline{m}$irabilis $\underline{t}$ranscription $\underline{r}$egulator (PMTR) has cystein sequence homology at metal binding domain to CueR (copper resistance) protein, which conserves two cysteins (Cys 112 and Cys 120 in PMTR). Gel shift assay revealed that PMTR protein bound to promoter region of Escherichia coli copA (copper-translocating P-type ATPase) and Proteus mirabilis atpase (putative copper-translocating P-type ATPase) genes except that of E. coli zntA (zinc-translocating P-type ATPase) gene. DNase I protection experiment indicated that PMTR protein protected the region over -35 box and close to -10 box. DNase I hypersensitive bases were shown at C and A bases of labeled template strand and at G and C bases of labeled non-template strand of DNA. These hypersensitive bases were appeared in other metalloregulatory proteins of MerR family, which suggests protein-induced DNA bending.

Purification and Characterization of an Acid Deoxyribonuclease from the Cultured Mycelia of Cordyceps sinensis

  • Ye, Maoqing;Hu, Zheng;Fan, Ying;He, Ling;Xia, Fubao;Zou, Guolin
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.466-473
    • /
    • 2004
  • A new acid deoxyribonuclease (DNase) was purified from the cultured mycelia of Cordyceps sinensis, and designated CSDNase. CSDNase was purified by $(NH_4)_2SO_4$ precipitation, Sephacryl S-100 HR gel filtration, weak anion-exchange HPLC, and gel filtration HPLC. The protein was single-chained, with an apparent molecular mass of ca. 34 kDa, as revealed by SDS-PAGE, and an isoelectric point of 7.05, as estimated by isoelectric focusing. CSDNase acted on both double-stranded (ds) and single- stranded (ss) DNA, but preferentially on dsDNA. The optimum pH of CSDNase was pH 5.5 and its optimum temperature 55. The activity of CSDNase was not dependent on divalent cations, but its enzymic activity was inhibited by high concentration of the cation: $MgCl_2$ above 150 mM, $MnCl_2$ above 200 mM, $ZnCl_2$ above 150 mM, $CaCl_2$ above 200 mM, NaCl above 300 mM, and KCl above 300 mM. CSDNase was found to hydrolyze DNA, and to generate 3-phosphate and 5-OH termini. These results indicate that the nucleolytic properties of CSDNase are essentially the same as those of other well-characterized acid DNases, and that CSDNase is a member of the acid DNase family. To our knowledge, this is the first report of an acid DNase in a fungus.

Identification of Immunostimulatory Oligodeoxynucleotide from Escherichia coli Genomic DNA

  • Choi, Yong-Jun;Lee, Keun-Wook;Kwon, Hyung-Joo;Kim, Doo-Sik
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.788-793
    • /
    • 2006
  • Bacterial DNA containing immunostimulatory CpG motifs can stimulate antigen-presenting cells to express co-stimulatory molecules and to produce various cytokines in vivo and in vitro. In this study, we fragmented macromolecular E.coli genomic DNA with DNase I, and analyzed the ability of the resulting DNA fragments to induce the NF-${\kappa}B$ activation and humoral immune response. Furthermore, using computational analysis and luciferase assay for synthetic ODNs based on the sequence of the immunostimulatory DNA fragments (DF-ODNs), an active component of DF-ODNs sequences was investigated. Experimental results demonstrated that DF-ODN is optimal for the NF-${\kappa}B$-responsive promoter activation in the mouse macrophage cell line and the humoral immune response in vivo. In agreement with the activity of the DF-ODNs processed by DNase I, a synthetic ODN based on the DF-ODN sequences is potent at inducing IL-12 mRNA expression in primary dendritic cells. These results suggest that the discovery and characterization of a highly active natural CpG-ODN may be achieved by the analyses of bacterial DNA fragments generated by a nuclease activity.

Removal of Contaminating TEM-la $\beta-Lactamase$ Gene from Commercial Taq DNA Polymerase

  • Song Jae Seok;Lee Jung Hun;Lee Jung-Hyun;Jeong Byeong Chul;Lee Won-Keun;Lee Sang Hee
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.126-128
    • /
    • 2006
  • This study confirms that Taq DNA polymerase could be contaminated with the $blaTEM-1_a$ gene. It also proposes two different methods that could be used to overcome DNA contamination: (i) DNase I treatment prior to PCR amplification; and (ii) the use of a highly purified Taq DNA polymerase which was devoid of detectable contamination.

Role of Exopolymeric Substances (EPS) in the Stability of the Biofilm of Thiomonas arsenivorans Grown on a Porous Mineral Support

  • Michel, Caroline;Garrido, Francis;Roche, Emilie;Belval, Sylvain Challan;Dictor, Marie-Christine
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.183-186
    • /
    • 2011
  • Biochemical methods were selected to evaluate the role of exopolymeric substances in the stability of biofilms used in bioremediation processes. Biofilms of Thiomonas arsenivorans formed on pozzolana were thus treated with pronase (protein target), lectins (Con A or PNA), calcofluor or periodic acid (polysaccharides target), DNase (DNA target), and lipase (triglycerides target). Neither protease nor DNase treatments had any effect on bacterial adhesion. Lectins and calcofluor treatments mainly affected young biofilms. Lipase treatment had a noticeable effect on biofilm stability whatever the biofilm age. Results suggest that it would be an increased resistance of mature biofilms that protects them from external attacks.

Properties of the Endonuclease Secreted by Human B Lymphoblastic IM9 Cells

  • Kwon, Hyung-Joo;Kim, Doo-Sik
    • BMB Reports
    • /
    • v.31 no.1
    • /
    • pp.106-110
    • /
    • 1998
  • We have employed a DNA-native-polyacrylamide gel electrophoresis (DNA-native-PAGE) assay system to characterize the enzyme activity of the endonuclease secreted by human B lymphoblastic IM9 cells. Experimental results clearly demonstrated that the endonuclease activity of IM9 cell culture medium is distinct from that of DNase I in the DNA-native-PAGE assay system. Immunoprecipitation analysis using anti-DNase I antibody showed that the secreted endonuclease is not recognized by the antibody. The secreted endonuclease was estimated using supercoiled plasmid DNA as a substrate. The pH optimum required for the catalytic activity was determined to be in the range of pH 6.6-7.4. No significant difference in the endonuclease secretion was observed by stimulation of the IM9 cells with interferon-${\gamma}$ or interleukin-$1{\beta}$.

  • PDF