• Title/Summary/Keyword: DNS Simulation

Search Result 133, Processing Time 0.027 seconds

A Light-weighted Data Collection Method for DNS Simulation on the Cyber Range

  • Li, Shuang;Du, Shasha;Huang, Wenfeng;Liang, Siyu;Deng, Jinxi;Wang, Le;Huang, Huiwu;Liao, Xinhai;Su, Shen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3501-3518
    • /
    • 2020
  • The method of DNS data collection is one of the most important parts of DNS simulation. DNS data contains a lot of information. When it comes to analyzing the DNS security issues by simulation on the cyber range with customized features, we only need some of them, such as IP address, domain name information, etc. Therefore, the data we need are supposed to be light-weighted and easy to manipulate. Many researchers have designed different schemes to obtain their datasets, such as LDplayer and Thales system. However, existing solutions consume excessive computational resources, which are not necessary for DNS security simulation. In this paper, we propose a light-weighted active data collection method to prepare the datasets for DNS simulation on cyber range. We evaluate the performance of the method and prove that it can collect DNS data in a short time and store the collected data at a lower storage cost. In addition, we give two examples to illustrate how our method can be used in a variety of applications.

Numerical Simulation of Mechanical Behavior of Composite Structures by Supercomputing Technology

  • Kim, Seung-Jo;Ji, Kuk-Hyun;Paik, Seung-Hoon
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.373-407
    • /
    • 2008
  • This paper will examine the possibilities of the virtual tests of composite structures by simulating mechanical behaviors by using supercomputing technologies, which have now become easily available and powerful but relatively inexpensive. We will describe mainly the applications of large-scale finite element analysis using the direct numerical simulation (DNS), which describes composite material properties considering individual constituent properties. DNS approach is based on the full microscopic concepts, which can provide detailed information about the local interaction between the constituents and micro-failure mechanisms by separate modeling of each constituent. Various composite materials such as metal matrix composites (MMCs), active fiber composites (AFCs), boron/epoxy cross-ply laminates and 3-D orthogonal woven composites are selected as verification examples of DNS. The effective elastic moduli and impact structural characteristics of the composites are determined using the DNS models. These DNS models can also give the global and local information about deformations and influences of high local in-plane and interlaminar stresses induced by transverse impact loading at a microscopic level inside the materials. Furthermore, the multi-scale models based on DNS concepts considering microscopic and macroscopic structures simultaneously are also developed and a numerical low-velocity impact simulation is performed using these multi-scale DNS models. Through these various applications of DNS models, it can be shown that the DNS approach can provide insights of various structural behaviors of composite structures.

HUGE DIRECT NUMERICAL SIMULATION OF TURBULENT COMBUSTION - TOWARD PERFECT SIMULATION OF IC ENGINE -

  • Tanahashi, Mamoru;Seo, Takehiko;Sato, Makoto;Tsunemi, Akihiko;Miyauchi, Toshio
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.114-125
    • /
    • 2008
  • Current state and perspective of DNS of turbulence and turbulent combustion are discussed with feature trend of the fastest supercomputer in the world. Based on the perspective of DNS of turbulent combustion, possibility of perfect simulations of IC engine is shown. In 2020, the perfect simulation will be realized with 30 billion grid points by 1EXAFlops supercomputer, which requires 4 months CPU time. The CPU time will be reduced to about 4 days if several developments were achieved in the current fundamental researches. To shorten CPU time required for DNS of turbulent combustion, two numerical methods are introduced to full-explicit full-compressible DNS code. One is compact finite difference filter to reduce spatial resolution requirements and numerical oscillations in small scales, and another is well-known point-implicit scheme to avoid quite small time integration of the order of nanosecond for fully explicit DNS. Availability and accuracy of these numerical methods have been confirmed carefully for auto-ignition, planar laminar flame and turbulent premixed flames. To realize DNS of IC engine with realistic kinetic mechanism, several DNS of elemental combustion process in IC engines has been conducted.

Huge Direct Numerical Simulation of Turbulent Combustion-Toward Perfect Simulation of IC Engine-

  • Tanahashi, Mamoru
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.359-366
    • /
    • 2008
  • Current state and perspective of DNS of turbulence and turbulent combustion are discussed with feature trend of the fastest supercomputer in the world. Based on the perspective of DNS of turbulent combustion, possibility of perfect simulations of IC engine is shown. In 2020, the perfect simulation will be realized with 30 billion grid points by 1EXAFlops supercomputer, which requires 4 months CPU time. The CPU time will be reduced to about 4 days if several developments were achieved in the current fundamental researches. To shorten CPU time required for DNS of turbulent combustion, two numerical methods are introduced to full-explicit full-compressible DNS code. One is compact finite difference filter to reduce spatial resolution requirements and numerical oscillations in small scales, and another is well-known point-implicit scheme to avoid quite small time integration of the order of nanosecond for fully explicit DNS. Availability and accuracy of these numerical methods have been confirmed carefully for auto-ignition, planar laminar flame and turbulent premixed flames. To realize DNS of IC engine with realistic kinetic mechanism, several DNS of elemental combustion process in IC engines has been conducted.

  • PDF

Huge Direct Numerical Simulation of Turbulent Combustion - Toward Perfect Simulation of IC Engine -

  • Tanahashi, Mamoru
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.359-366
    • /
    • 2008
  • Current state and perspective of DNS of turbulence and turbulent combustion are discussed with feature trend of the fastest supercomputer in the world. Based on the perspective of DNS of turbulent combustion, possibility of perfect simulations of IC engine is shown. In 2020, the perfect simulation will be realized with 30 billion grid points by 1EXAFlops supercomputer, which requires 4 months CPU time. The CPU time will be reduced to about 4 days if several developments were achieved in the current fundamental researches. To shorten CPU time required for DNS of turbulent combustion, two numerical methods are introduced to full-explicit full-compressible DNS code. One is compact finite difference filter to reduce spatial resolution requirements and numerical oscillations in small scales, and another is well-known point-implicit scheme to avoid quite small time integration of the order of nanosecond for fully explicit DNS. Availability and accuracy of these numerical methods have been confirmed carefully for auto-ignition, planar laminar flame and turbulent premixed flames. To realize DNS of IC engine with realistic kinetic mechanism, several DNS of elemental combustion process in IC engines has been conducted.

  • PDF

An Efficient Searching of Vulnerabilities Based on a DNS System Model using Ptolemy (톨레미를 이용한 DNS 시스템 모델 기반의 효율적 취약성 탐지)

  • Shin, Seung-Hun;Park, Seung-Kyu;Jung, Ki-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.6
    • /
    • pp.921-926
    • /
    • 2009
  • Vulnerabilities in software can result in many social and economic problems once it has already been deployed and put to use. Thus, the vulnerabilities should be seriously taken into consideration from the beginning step of software development. A modeling and simulation method for software can be adopted as a testing tool for establishing vulnerability inspection strategies. For verification of usability of this strategy, in this paper, we modeled the behavior of a DNS system using Ptolemy and the simulation was performed. The result shows that a well-known vulnerability of DNS server could be effectively found, which confirms that the modeling and simulation can be used for vulnerability testing.

Direct Numerical Simulation of Active Fiber Composite (능동 섬유 복합재의 직접적 수치 모사)

  • 백승훈;김승조
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.5-9
    • /
    • 2003
  • Stress and deflection of Active Fiber Composite(AFC) embedded and/or attached composite structures are numerically investigated at the constituent level by the Direct Numerical Simulation(DNS). The DNS approach which models and simulates the fiber and matrix directly using 3D finite elements need to be solved by efficient way. To handle this large scale problem, parallel program for solving piezoelectric behavior was developed and run on the parallel computing environment. Also, the stress result from DNS approach is compared with that from uniform field model.

  • PDF

DNS Resolution with Renewal Using Piggyback

  • Jang, Beak-Cheol;Lee, Dong-Man;Chon, Kil-Nam;Kim, Hyun-Chul
    • Journal of Communications and Networks
    • /
    • v.11 no.4
    • /
    • pp.416-427
    • /
    • 2009
  • Domain name system (DNS) is a primary identification mechanism for Internet applications. However, DNS resolutions often take an unbearably long time, and this could seriously impair the consistency of the service quality of Internet applications based on DNS such as World Wide Web. Several approaches reduce DNS resolution time by proactively refreshing expired cached records or prefetching available records beforehand, but these approaches have an inherent problem in that they cause additional DNS traffic. In this paper, we propose a DNS resolution time reduction scheme, named renewal using piggyback (RUP), which refreshes expired cached records by piggybacking them onto solicited DNS queries instead of by issuing additional DNS queries. This method decreases both DNS resolution time and DNS traffic since it reduces the number of queries generated to handle a given DNS resolution without generating additional DNS messages. Simulation results based on two large independent DNS traces show that our proposed approach much reduces not only the DNS resolution time but also the DNS traffic.

low Velocity Impact Behavior Analysis of 3D Woven Composite Plate Considering its Micro-structure (미시구조를 고려한 3차원 직교직물 복합재료 평판의 저속충격 거동해석)

  • Ji, Kuk-Hyun;Kim, Seung-Jo
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.44-51
    • /
    • 2005
  • In this paper, we developed the direct numerical simulation(DNS) model considering the geometry of yams which consist of 3D orthogonal woven composite materials, and using this model, the dynamic behavior of under transverse low-velocity impact has been studied. To build up the micromechanical model considering tow spacing and waviness, an accurate unit structure is presented and used in building structural plate model based on DNS. For comparison, DNS results are compared with those of the micromechanical approach which is based on the global equivalent material properties obtained by DNS static numerical tests. The effects with yarn geometrical irregularities which are difficult to consider in a macroscopic approach are also investigated by the DNS model. Finally, the multiscale model based on the DNS concepts is developed to enhance efficiency of analysis with real sized numerical specimen and macro/micro characteristics are presented.

A Study on the Improvement Plan of Information Process Model in C4ISR Effectiveness Analysis Model DNS (C4ISR효과분석모델 DNS의 정보처리모델 개선 방안 연구)

  • Lee, Kwang-Myoung;Hong, Yoon-Gee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1822-1829
    • /
    • 2012
  • In this research, we developed the Information Circulation Model(ICM) by modifying and supplementing Information Process Model(IPM) in DNS. This ICM is used to simulate some combat situations that could not be considered with the existing DNS. We showed that this improved ICM can be applied to simulation and analysis of a variety of interests compared with IPM in DNS. We expect this study could be a basic research for further development of C4ISR effectiveness analysis in our national defense community.