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DNS Resolution with Renewal Using Piggyback

Beakcheol Jang, Dongman Lee, Kilnam Chon, and Hyunchul Kim

Abstract: Domain name system (DNS) is a primary identification
mechanism for Internet applications. However, DNS resolutions
often take an unbearably long time, and this could seriously im-
pair the consistency of the service quality of Internet applications
based on DNS such as World Wide Web. Several approaches re-
duce DNS resolution time by proactively refreshing expired cached
records or prefetching available records beforehand, but these ap-
proaches have an inherent problem in that they cause additional
DNS traffic. In this paper, we propose a DNS resolution time re-
duction scheme, named renewal using piggyback (RUP), which re-
freshes expired cached records by piggybacking them onto solicited
DNS queries instead of by issuing additional DNS queries. This
method decreases both DNS resolution time and DNS traffic since
it reduces the number of queries generated to handle a given DNS
resolution without generating additional DNS messages. Simula-
tion results based on two large independent DNS traces show that
our proposed approach much reduces not only the DNS reselution
time but also the DNS traffic.

Index Terms: Domain name system (DNS), piggyback, renewal,
renewal using piggyback (RUP).

I. INTRODUCTION

Domain name system (DNS) is a primary identification mech-
anism for looking up hosts and servers for Internet applications
such as the Web and electronic mail. Name resolution, one of
the key DNS functions, maps a domain name to an IP address
and vice versa. However, recent studies [1]-[3] warn that DNS
resolutions often take unbearably long and this excessively long
DNS lookup time can seriously impair the consistency of the
service quality of DNS-based Internet applications, especially
the Web. Wills and Shang [4] report that as many as approx-
imately 30% of DNS resolutions for servers randomly chosen
from a log at the National Laboratory for Applied Network
Research (NLANR) exceed two seconds, and Cohen and Ka-
plan [1] report that as many as about 10% of DNS resolutions for
servers drawn from a log of AT&T proxy servers take more than
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four seconds. Moreover, a noticeable number of DNS lookups
are unanswered. Jung and Sit [5] report that 23% of all client
lookups in an MIT trace fail to elicit any answer, even a failure
indication. The query packets for these unanswered lookups, in-
cluding retransmissions, account for more than half of all DNS
query packets in the trace.

Why does the DNS resolution often take so much time? First,
since DNS databases are hierarchically distributed, a DNS res-
olution may involve several DNS queries to multiple remote
DNS servers. The second reason is that DNS uses static timeout
value and retransmissions for reliable delivery because standard
DNS query messages are delivered using user datagram proto-
col (UDP). As a result, DNS resolutions take in the order of
seconds in the presence of packet losses. To alleviate these prob-
lems, DNS uses a caching scheme. Local DNS servers (LDNSs)
cache all the records that they receive as responses to DNS
queries, which are available until their time-to-live (TTL) val-
ues expire [6]-[9]. Several studies report that about 80% of DNS
lookups are cache-hits [4], [10], but the DNS resolution time still
tends to be unpredictable. It has been reported that about 50%
of DNS resolutions take more than 100 ms, and that about 10%
of DNS resolutions take more than one second [5]. However,
there remains room for improvement in the DNS cache. 67%
10 90.3% of DNS cache misses are previously seen misses [2],
a problem which occurs because the cached records are expired
even though they are in the DNS cache. If the expired records
had been refreshed beforehand, the misses could have been re-
moved.

In spite of such critical performance degradation, only a few
papers have been published in the last several years on how to
improve the DNS resolution time. Cohen and Kaplan propose a
method called pre-resolving, which is based on the local avail-
ability of a Web page [1]. They also propose renewal, which
reduces the cache-miss rate by proactively refreshing cached
records when they expire [2]. Although these schemes do re-
duce DNS resolution time somewhat, this improvement comes
at the cost of additional DNS traffic.

Although the existing approaches reduce DNS resolution
time, they necessarily incur additional DNS traffic and do not
fully exploit the unused potential of the DNS protocol. In this
paper, we propose a DNS resolution time reduction scheme,
named renewal using piggyback (RUP). It refreshes expired
cached records by simply piggybacking them onto DNS query
messages instead of refreshing them by issuing additional DNS
query messages, like the renewal scheme requires. RUP de-
creases both the DNS resolution time and traffic since it re-
duces the number of queries generated to handle DNS resolu-
tions without additional DNS query messages. Simulation re-
sults based on two large independent DNS traces show that the
proposed scheme reduces the DNS resolution time and the num-
ber of DNS messages as much as 45.5% and maximum 45.8%,
respectively. They also show that such improvements can be en-
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Fig. 1. Example of renewal using piggyback (RUP) mechanism; in which
two expired cached records, www.google.com and mail.google.com
are piggybacked and refreshed in the resolution 3.

sured regardless of the variation of TTL value. In the evaluation
between the best RUP policy and the best renewal policy {2],
the best RUP policy reduces the DNS resolution time more effi-
ciently than the best renewal policy does. It also remarkably de-
creases the DNS traffic, while the best renewal policy increases
it in proportion to the number of refreshed records, that is, it is
not scalable.

The remainder of this paper is organized as follows. In Sec-
tion II, we describe the existing DNS resolution time reduction
schemes. Section III presents the proposed scheme in detail. In
Section IV, we evaluate the proposed scheme. Section V pro-
vides an evaluation between the proposed scheme and the ex-
isting DNS resolution time reduction scheme. Finally, we con-
clude in Section V1.

IL. RELATED WORKS

In this section, we discuss existing DNS resolution time re-
duction schemes. Cohen and Kaplan [1] conduct measurement
studies based on a log of AT&T research proxy servers and ver-
ify that DNS resolution time is a major cause of long Web laten-
cies. They propose pre-resolving, in which browsers or proxies
perform DNS resolutions on all links or their subsets that appear
in a Web page before a request to the server is issued, thereby
eliminating DNS query time from user-perceived latency. How-
ever, though it achieves a reduction of Web latency through the
improvement of DNS cache performance, it also incurs addi-
tional DNS traffic.

Another measurement is taken, showing that most DNS
cache-misses, from about 67.0% to 90.3%, are expired misses.
In response, Cohen and Kaplan propose a proactive caching
scheme named renewal [2]. In the scheme, when a cached record
is expired, a local DNS server (LDNS) automatically sends
an unsolicited query message to the authoritative DNS server
(ADNS) of the record. With a response from the ADNS, the
expired cached record is refreshed and available for its TTL
duration. The simulation results show that the proposed ap-
proach reduces the DNS cache-miss rate by as much as about
40% to 80%. However, this scheme increases the DNS traf-
fic in direct proportion to the number of the records refreshed
by the scheme. Moreover, it can impose a heavy burden on
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the DNS server because multiple DNS servers may be involved
in refreshing an expired cached record. Specifically, when an
LDNS does not know the ADNS of an expired cached record,
it cannot send a DNS query directly to the ADNS and must
send several DNS queries to upper-level ADNSs such as root
or gTLD DNS servers to find the ADNS of the record. Even if
the LDNS knows the ADNS of an expired cached record and
directly sends just a DNS query to the ADNS in renewal, it is
an excessive effort to use a DNS query to refresh an expired
cached record. The ADNS will serve to put needless records in
the response message of the query. For examples, let’s assume
that www.kaist.edu has three type A resource records (RRs) and
three ADNSs, which are cached in a LDNS. Only one of type A
RRs of www.kaist.edu is expired. In renewal, the LDNS sends a
query message to an ADNS of kaist.edu to refresh the RR. The
ADNS will send a DNS response including three type A RRs
of www.kaist.edu in the answer section, three type NS RRs of
kaist.edu in the authority section, and three type A RRs of the
NS RRs in the additional section though the LDNS needs to re-
fresh only one of type A RRs of wwwkaist.edu. Like this, it
is a waste of resource to use DNS queries to refresh an expired
cached record.

1. RENEWAL USING PIGGYBACK

In this section, we describe our proposed scheme, RUP. RUP
piggybacks expired cached records, refresh requests, onto a so-
licited DNS query message to refresh them. Piggybacking tech-
niques incur low overhead and can be incrementally deployed
because they exploit existing protocols [3]. Because of such
benefits, piggybacking has been exploited for such processes as
cache validations in proxy cache [11], sending hints [12], and
reducing the connection setup time between clients and Web
servers [3], among other uses.

A. Renewal Using Piggyback Mechanism

RUP only exploits solicited DNS queries for renewals of
expired cached records instead of generating additional DNS
queries. Whenever a LDNS should send a DNS query to an
ADNS to answer a client’s resolution, the expired cached
records, the refresh questions, authorized by the ADNS are pig-
gybacked onto the query as the format of the resource record
{RR). We do not recommend using the format of DNS question
for the refresh question because we need to refresh not the an-
swer of a question but an expired cached record in itself. The
answer of a question must include other useless records with the
record that we need to refresh. Moreover current DNS does not
theoretically and practically support multiple DNS questions in
a DNS query [6], [7], [9]. The ADNS sends a response, and
the refreshed records are piggybacked onto the response. In
RUP, the results of each query are cached and indexed per each
ADNS. Once the records are refreshed, their TTL values get re-
freshed and they can be reused for their respective TTL value
durations.

As shown 1n Fig. 1, the proposed scheme works as follows.

1) A host requests a resolution for www.google.com to its
LDNS. If it has no related record in its cache, the IL.LDNS
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performs the resolution as follows: 1.1) The LDNS redi-
rects the resolution to a root DNS server (RDNS), and the
RDNS responds with an NS record for .com. The LDNS
caches the result and it is indexed by the RDNS. 1.2) The
LDNS redirects the resolution to the .com ADNS, and
the ADNS responds with an NS record for google.com.
The LDNS caches the result, which is indexed by the
.com ADNS. 1.3) Finally, the resolution is redirected to
the google.com ADNS, and the ADNS responds with the
name to IP address mapping information (an A record) for
www.google.com. The result is cached in the LDNS and
indexed by the google.com ADNS and is sent to the host.
A host requests a resolution for mail.google.com to the
LDNS. If the corresponding record is not in its cache but
the NS record for google.com is cached and fresh at the
LDNS, the following step is performed for the resolution:
2.1) The LDNS immediately redirects the resolution to the
google.com ADNS. The ADNS responds with an A record
for mail.google.com, the LDNS caches the result indexed
by the google.com ADNS, and sends it to the host.

A host requests the resolution for shopping.google.com
to the LDNS. If the A records for www.google.com and
mail.google.com in the LDNS cache are expired but the
NS record for google.com is cached and fresh, the resolu-
tion is performed as follows: 3.1) The LDNS immediately
redirects the resolution to the google.com ADNS. At the
same time, it piggybacks the expired cached records, the
A records for www.google.com and mail.google.com, onto
the query message. The ADNS responds with an A record
of shopping.google.com and simultaneously piggybacks A
records for www.google.com and mail.google.com. The
A tecord for shopping.google.com is cached and in-
dexed by the google.com ADNS and is sent to the host
and, simultaneously, A records for www.google.com and
mail.google.com are refreshed and made available for their
TTL duration.

2)

3)

B. Renewal Using Piggyback Message Format

RUP message formats are designed to exploit the unused
fields of the existing DNS protocol. We use the ARCOUNT
field and the additional record section of the DNS message for-
mat [6], [7]: The ARCOUNT field specifies the number of RRs
of the additional record section in a DNS response message,
and although it exists, it is not used in a DNS query message.
The additional record section carries RRs which may be help-
ful in using the RRs in other sections of a DNS response mes-
sage; it exists but is empty in a DNS query message. For RUP
queries, expired cached records are piggybacked onto the ad-
ditional record section to the form of RR and the number of
records is specified in the ARCOUNT field of a DNS query mes-
sage. We say that the expired cached record is piggybacked in
an RUP query message to an RUP question. In an RUP response
message, the refreshed records are piggybacked onto the addi-
tional record section to the form of RR with existing additional
records. The ARCOUNT field specifies the number of records
in the additional record section. As above, the expired cached
record is piggybacked in an RUP response message to an RUP
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answer.

DNS messages are limited to 512 bytes, and longer mes-
sages are truncated when UDP is used as a transmission mech-
anism [7]. BIND, the most popular DNS server software,
transfers messages exceeding 512 bytes after truncation using
TCP [9], but DNS extension mechanism [16] and the latest 9.0
version of BIND [9] extend the limit to 1280 bytes. We limit
the size of an RUP message to the limits of DNS message. That
is, an RUP query message piggybacks RUP questions within the
512 byte or 1280 byte limit by DNS server softwares rather than
piggybacking all expired cached records indexed by an ADNS,
and an RUP response message does the same for RUP answers.
This may lead to a situation that the RUP response message
cannot accommodate all the answers to the RUP questions in
an RUP query message. In this case, an RUP response mes-
sage piggybacks RUP answers up to the 512 byte or 1280 byte
limit, starting from an answer to the first RUP question. For in-
stance, if the LDNS sends 10 RUP questions in an RUP query,
but the RUP response only has room for 6 answers, the ADNS
answers first 6 RUP questions, and drops the rest of the RUP
questions. The proposed RUP message format only exploits the
unused fields of the existing DNS message format, and is inter-
operable with the current DNS.

C. Renewal Using Piggyback Polices

We naturally restrict the number of RUP questions in a DNS
query by the limitations on the RUP message length (i.e., 512
bytes or 1280 bytes), and useful records should be piggybacked
as much as possible. Here we present several RUP policies that
determine which expired cached records should be piggybacked.
In the policies, each cached record is stored and indexed per its
ADNS. When a cached record is used, the cached records in-
dexed by the same ADNS are sorted according to each RUP
policy. Whenever an LDNS should send a query message to an
ADNS to answer a host’s lookup, the expired cached records in-
dexed by the ADNS are piggybacked according to their order.
Each RUP policy has a variable (m), the maximum number of
RUP questions per RUP message, which limits the maximum
number of RUP questions that can be piggybacked in a RUP
message as many as its value. The LDNS can control the vari-
able within the 512 byte or 1280 byte limit.

We describe our RUP policies by specifying how each of them
sorts and piggybacks cached records. Our policy-design princi-
ples are to use only the information available locally at the DNS
server cache, be simple enough to implement, and incur a min-
imum of overhead. We name our RUP policies to be analogous
to the cache replacement policies, with analogies made based on
the property of the request sequence exploited.

e RUP-FIFO (m): Each cached record is stored in a stack
indexed by its ADNS. Once the records are stored, their
sequence never changes. The expired cached records are
piggybacked in the order of first-stored-first-piggybacked,
which is similar to the first-in-first-out (FIFO) cache re-
placement policy [13], [14]. Unfortunately, it suffers from
Belady’s anomaly like the FIFO policy [13], [14].

e RUP-LRU (m): Each cached record is stored in a stack in-
dexed by its ADNS. Whenever a cached record is used, it is
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moved to the top of the stack. The expired cached records
are piggybacked in the order of the stack. That is, the ex-
pired cached records are piggybacked in the order of most-
recently-used. This policy is similar to the least-recently-
used (LRU) cache replacement policy [13], [14] that re-
moves cached items in the order of least-recently cached
hits. It inherits the replacement overhead from the LRU
policy.

o RUP-LFU (m): Each cached record is stored in an array in-
dexed by its ADNS. Whenever a cached record is used, the
priority of the cached record is by incremented as much as
its fixed value, and the cached records indexed by the same
ADNS as the cached record are sorted in priority sequence.
The expired cached records are piggybacked according to
the order of the array. This policy is similar to the least-
frequently-used (LFU) cache replacement policy {14] that
removes cached items in the order of the smallest number
of hits, and it inherits the sorting overhead from the LFU
policy.

The performance of RUP relies on the number of DNS queries
sent by the LDNS to the ADNS. If there are a few such queries,
the cached record barely gets refreshed by piggybacking. How-
ever, the more the traffic between the LDNS and ADNS in-
creases, the more frequently the cached records are refreshed.
The added cost of our mechanism is mainly the increased size
of the regular DNS messages and additionally generated RUP
questions due to piggybacking. However, our simulation result
shows that the increased byte consumption by piggybacking is
trivial or often reduces overall bytes consumed by the DNS
cache policy [6], [7] (see Fig. 4). The number of RUP ques-
tions piggybacked onto a single query can be also controlled by
changing the value of the maximum number of RUP questions
per RUP message. Moreover, our simulation result reports that
even when the maximum number of RUP questions per RUP
message is one, the best RUP policy reduces the resolution time
of the DNS cache policy as much as 23.8% (see Fig. 2). The cost
for the LDNS cache is slightly increased as it must maintain a
list of cached records on a per server basis. The additional cost
for the ADNS is that it must refresh the piggybacked records
in addition to processing the regular DNS question. However,
in the absence of piggybacking, such requests may have to be
done, in the future, by the LDNS in separate DNS queries.

IV. EVALUATION OF RENEWAL USING PIGGYBACK
POLICIES

In this section, we evaluate the performance of RUP policies
and suggest the best RUP policy as a solution to the problem of
renewal. We compare the performance of the best RUP policy
with that of the best renewal policy in the Section V.

A. Evaluation Model
A.1 Collected Traces

We construct trace-driven simulations based on two DNS
traces, both of which were collected using tcpdump [17]. Ta-
ble 1 presents the basic characteristics of our DNS traces. For
our simulation, we exploit the resolutions that are successfully
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Table 1. Basic trace statistics.

KAIST trace Yonsei trace

Date Nov 23-27, 2002 || Feb 5-9, 2002
Place KAIST, Yonsei univ.,
Daejeon, Seoul,

South Korea South Korea

Total lookup 16,966,061 8,996,167
Total query 6,533,016 2,854,049
Distinct host 9,268 6,865
Distinct DNS server 64,327 76,106
Distinct domain name 692,504 575,639

answered. The unanswered resolutions can not be simulated be-
cause they do not receive any answer message.

A.2 Parameter Used

We evaluate RUP policies by varying two parameters: The
maximum number of RUP questions per RUP message and the
TTL value.

o Maximum number of RUP questions per RUP message:
This assessment is important since as the parameter in-
creases, the LDNS with RUP policies sends more fre-
quently a burst of RUP question onto a DNS query to an
ADNS. The burst of requests onto a DNS query can make
the ADNS instantaneously busy. Therefore, RUP policies
should provide proper performance by keeping the value of
this parameter as small as possible. We set the range of this
parameter from O to 17 because the average of maximum
values of this parameter is about 17 in our traces. We limit
the size of RUP message to 512 bytes.

o Time-to-live value: The evaluation of this parameter is sig-
nificant. The first reason for this is that the TTL value di-
rectly affects the performance of DNS cache. The second
reason is that the trend of TTL value allocation is variable
according to the times. For instance, the initial DNS rec-
ommends that TTL values should be on the order of days
for the typical hosts [6]. However, the current abnormal
uses of DNS prefer exceptionally low TTL values, usually
only a few seconds or minutes, which deteriorate the DNS
resolution time and increase the DNS traffic. Specifically,
content distribution network (CDN) and popular Web sites
with multiple servers allocate low TTL values to their RRs
to help balance the load across servers, for fault tolerance,
or to direct each client request to a geographically close
server [15]. In mobile networking, dynamic DNS allocates
low TTL values to provide the basis for host mobility sup-
port in the Internet as well [10]. Therefore, RUP policies
must be able to consistently improve the performance of
the DNS cache policy at all the TTL value as much as pos-
sible so that the performance of them is not dependent on
the trend of TTL value allocation. We set the range of TTL
values from one to 604,800 seconds (seven days) because
the maximum TTL value for RRs is restricted to 604,800
seconds [9]. We use the scale of the log in the presentation,
and the range is shown from one to 1,000,000 seconds.

We do not vary the cache space of the DNS server because it
is not a significant issue in DNS. DNS caching differs in some
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basic respects from content-caching. RRs have a considerably
smaller size, and the storage space is ample with respect to the
amount of data. In fact, the cache space of DNS servers is the-
oretically infinite in RFCs 6], [7], and there is not any practical
limit in BIND [9].

A.3 Evaluation Metrics

We take the following as evaluation metrics: the average res-
olution time, the average number of queries per resolution, and
the average bytes consumed per resolution, which have been tra-
ditionally considered when evaluating the performance of re-
source retrieval [11]. We also present the average number of
RUP questions per RUP message as a measure of the evalua-
tion. We do not consider the memory overhead as our evalua-
tion metric because the memory usage is not important in DNS
cache. The memory usage of DNS cache is trivial (at most a few
mega bytes) because sizes of resource records are small (tens of
bytes). In reality, DNS cache size is not limited, and expired
cached records are not deleted in both the standards [6], [7] and
the implementation [9].

e Average resolution time: This describes how long it takes
on average for DNS lookups to receive responses. The pri-
mary purpose of our proposed scheme is to reduce the DNS
resolution time.

Average number of queries per resolution: This describes
the average number of queries issued to handle a DNS res-
olution. It shows the network overheads of RUP policies in
terms of the number of messages

Average number of bytes consumed per resolution: This
describes the average number of bytes consumed for a res-
olution by both requesting and requested DNS servers. It
shows the network overheads of RUP policies in terms of
the number of bytes.

Average number of RUP questions per RUP message: This
describes the average number of RUP questions piggy-
backed in an RUP message.

To avoid a duplication of the presentation, we do not provide the
performance of the DNS cache as an evaluation metric. In fact,
the average number of queries per resolution directly reflects the
performance of the DNS cache.

A4 Methodology

We evaluate the performance of the RUP policies, by consid-
ering the performance of the DNS cache policy as the base of the
evaluation. For these simulations, we build our own simulators,
which support the DNS cache policy [6], [7], [9] and the RUP
policies. We assume that there is no packet loss in a network and
no DNS server failure, and we apply name compression [6], [7].
All values applied for these simulations such as query times and
TTL values of RRs are actual values in our traces. As in the
experiment by Krishnamurthy and Wills [11], we add 0.1 ms to
the response time for each RUP question to reflect the additional
time needed to process a RUP question at both the client and the
server points.
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B. Evaluation Results

Here we vary the parameters to present various outcomes for
our evaluation metrics. Our presentation and explanation are fo-
cused on the performance of the best RUP policy.

Fig. 2 through 5 present the distributions of the average reso-
lution time, the average number of queries per resolution, the av-
erage bytes consumed per resolution, and the average number of
RUP questions per RUP message, varying the maximum number
of RUP questions per RUP message for our traces. Among RUP
policies, RUP-LFU consistently shows the best performance for
all our evalvation metrics. The performance of RUP-LRU is
nearly similar to that of RUP-LFU. RUP-FIFO is less effec-
tive than RUP-LFU and RUP-LRU. In this evaluation, the DNS
cache policy does not piggyback a RUP question, and its value
for this parameter is always zero. However, for ease of compar-
ison, we represent the performance of the DNS cache policy as
lines in the following figures.

In Fig. 2, the best RUP policy, RUP-LFU always shows lower
average resolution time than the DNS cache policy. The resolu-
tion time in RUP-LFU is sharply reduced as the maximum num-
ber of RUP questions per RUP message increase from one to
five, and the reduction becomes dull when the maximum num-
ber of RUP questions per RUP message 1s six to ten. There
shows little variation when the number becomes eleven or more
in both our traces. Specifically, it decreases the resolution time
of the DNS cache policy as much as 45.5% for the KAIST trace
and 41.0% for the Yonsei trace. This is because RUP-LFU re-
duces the number of queries for resolutions on the DNS cache
policy by increasing the performance of the DNS cache. Actu-
ally, users do not experience that each latency reduces by tens
of milliseconds but feel that about 50% of DNS resolutions hav-
ing taken from hundreds of millisecond to tens of second with
the DNS cache policy {5] take nearly zero second with RUP-
LFU because the cache miss-rate reduces as much as about
50%. Fig. 3 shows that RUP-LFU reduces the average num-
ber of queries per resolution of the DNS cache policy maximum
by as much as 45.8% and by 40.9% for our traces at KAIST and
Yonsei, respectively. In Fig. 4, although RUP-LFU increases the
average bytes consumed per resolution of the DNS cache policy
maximum by 3.2% and 4.9% for our traces, respectively, the in-
creases are obviously trivial when we consider the benefits for
the resolution time and the number of queries per resolution of
RUP-LFU. Moreover, RUP-LFU reduces, rather than increases,
the average bytes consumed per resolution of the DNS cache
policy at most of the instances, the maximum numbers of RUP
questions per RUP message of between one to fourteen for the
KAIST trace and between one to thirteen for the Yonsei trace. In
Fig. 5, RUP-LFU piggybacks averages of 5.0 and 4.1 RUP ques-
tions per RUP message at the worst case for each trace. One may
argue that the average numbers of 5.0 and 4.1 RUP questions per
RUP message imposes a heavy burden on the DNS server, but in
the absence of piggybacking, such requests may have to be done,
in the future, by the LDNS in separate DNS queries. Moreover,
he can control the average number of RUP questions per RUP
message by changing the value of the maximum number of RUP
questions per resolution. Even when the average number of RUP
questions per RUP message of about 0.70 for the KAIST trace
and about 0.65 for the Yonsei trace, when the maximum number
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of RUP questions per RUP message is one, RUP-LFU reduces
the resolution time of the DNS cache policy as much as 23.8%
and 20.1% for our traces at KAIST and Yonsei, respectively.

Figs. 6-9 present the distributions of the average resolution
time, the average number of queries per resolution, the average
bytes consumed per resolution, and the average number of RUP
questions per RUP message, varying TTL value for our traces.
As the results for the variation of the maximum pumber of RUP
questions per RUP message, RUP-LEFU shows the best perfor-
mance among RUP policies for all our evaluation metrics. The
performance of RUP-LRU is nearly similar to that of RUP-LFU.
RUP-FIFO is less efficient than RUP-LFU and RUP-LRU.

In Fig. 6, our best policy, RUP-LFU decreases the average
resolution time of the DNS cache policy at all the TTL values.
Specifically, it reduces the average resolution time of the DNS
cache policy as much as 46.7% for the KAIST trace at 700 sec-
onds TTL value, and 42.6% at 1,000 seconds TTL values for

the Yonsei trace. Fig. 7 shows that RUP-LFU decreases the av-
erage number of queries per resolution of the DNS cache policy
regardless of TTL values. Specifically, it decreases the average
number of queries per resolution of the DNS cache policy max-
imum by as much as 46.8% for the KAIST trace and by 42.7%
for the Yonsei trace. Moreover, it consistently reduces both the
resolution time and the number of queries per resolution of the
DNS cache policy regardless of TTL values in Figs. 8 and 9.
These facts prove that RUP-LFU can ensure the performance
improvement regardless of the variation of TTL values. In terms
of TTL value, the resolution time and the number of queries per
resolution of RUP-LFU are improved as much as about ten times
of those of the DNS cache policy. For the KAIST trace, the reso-
lution times of RUP-LFU are 288.5 ms at 10 seconds TTL value
and 152.2 ms at the TTL value of 100 seconds, while those of the
DNS cache policy are 272.8 ms and 137.1 ms at the TTL value
of 100 seconds and of 1000 seconds, respectively. In Fig. 8,
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RUP-LFU often requires more bytes for message transmission
than the DNS cache policy. However, its byte consumptions are
not more than two times of the DNS cache policy’s at most of
the TTL values. Moreover, they are smaller than the DNS cache
policy’s at 10,000 seconds or more TTL values. RUP-LFU pig-
gybacks on average the less than ten RUP questions per RUP
message at most of the TTL values.

In summary, we believe the similarity of results for the two
large, independent traces proves the effectiveness of our pro-
posed scheme. Among RUP policies, RUP-LFU shows the best
performance for all evaluation metrics. As a result, we suggest
RUP-LFU as a solution to renewal.

V. RENEWAL USING PIGGYBACK VS. RENEWAL

In this section, we compare the best RUP policy, RUP-LFU,
with the best renewal policy, renewal-LFU [2]. We perform a

trace-driven simulation using the traces in Table 1.

A. Evaluation Model

Here we describe the parameters used and the evaluation met-
Tics.

A.1 Parameter Used

To our evaluation parameter, we exploit the relative in-
crease of queries used as the parameter in the evaluation of
renewal policies [2]. However, we modify it to accommodate
both RUP-LFU and renewal-LFU. This is because RUP dif-
fers from renewal in terms of cache update operations; while
renewal refreshes expired cache records by issuing additional
DNS queries, RUP does them by piggybacking additional RUP
questions onto solicited DNS queries. Here we call by a request,
a regular DNS query issued to answer to the DNS resolution, an
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additional DNS query generated to refresh the expired cached
record in renewal, and an RUP question piggybacked onto the
DNS query to refresh the expired cached record in RUP. As a
result, we use the relative increase in requests instead of the rel-
ative increase in queries as our evaluation parameter. We nor-
malize the number of requests for the DNS cache policy to one.
The number of requests for RUP-LFU and renewal-LFU is mea-
sured relative to the normalized one for the DNS cache policy.

A.2 Evaluation Metrics

We use the relative quantity in resolution time, the relative
quantity in DNS messages (DNS queries and responses), and the
relative quantity in bytes consumed for message transmissions
as our evaluation metrics. We do not consider the processing
overhead at the DNS server as our evaluation metric because
we assume that the processing overhead of a RUP question by
RUP at the DNS server is similar to that of an additional DNS

query by renewal. As above, we normalize the performance of
the DNS cache policy on each evaluation metric to one and that
of the other two is measured relative to it. We also compare RUP
with renewal in terms of deployment overheads.

B. Evaluation Results

Fig. 10 presents the distributions of relative quantities in reso-
lution times, varying relative increases in requests for our traces.
Relative quantities in resolution times of RUP-LFU are smaller
than those of renewal-LFU, with request overheads of 1.0 to
about 2.2 for both our traces. This is because it may require
several requests, that is, DNS queries to muitiple ADNS in re-
newal, to refresh an expired cached record, while it needs only
a request, that is, an RUP question to an ADNS in RUP. For our
traces, renewal-LFU issues on average 1.33 DNS queries to re-
fresh an expired cached record. For the KAIST trace, RUP-LFU
and renewal-LFU reduce the resolution time of the DNS cache
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policy by 21.9% and 9.6%, respectively, with a request overhead
of 1.1. That is, RUP-LFU decreases the resolution time of the
DNS cache policy as much as 2.3 times (21.9%/9.6%) with a re-
quest overhead of 1.1, compared with renewal-LFU. It reduces
the resolution time of the DNS cache policy as much as 1.8
and 1.4 times, with the respective request overheads of 1.3 and
1.7, compared with renewal-LFU. For the Yonsei trace, RUP-
LFU decreases them as much as 1.8, 1.5, and 1.2 times with
each request overhead, respectively, compared with renewal-
LFU. However, the performances of RUP-LFU and renewal-
LFU are converged at the request overhead of about 2.2 for both
our traces. This is because RUP-LFU chooses the records to be
refreshed among cached records indexed by an ADNS, while
renewal-LFU chooses them among overall cached records, and
the usability of cached records refreshed by RUP-LFU deteri-
orates more than that of cached records refreshed by renewal-
LFU as the request overhead increases. For our traces, RUP-
LFU cannot issue requests more than the request overhead of

about 2.3, though renewal-LFU can. The first reason for this is
that RUP piggybacks RUP questions onto only solicited DNS
query messages. The second reason is that the size of an RUP
message is limited to 512 bytes.

Fig. 11 presents the relative quantities in DNS messages,
varying relative increases in requests for our traces. RUP-LFU
reduces overall DNS messages by increasing the performance
of the DNS cache. However, renewal-LFU increases them be-
cause it issues many additional DNS messages to refresh expired
cached records, though it improves the performances of DNS
caches like RUP-LFU. Specifically, RUP-LFU reduces DNS
messages maximum as much as 40.7% for the KAIST trace
and by 35.1% for the Yonsei trace, with a request overhead of
about 2.2. However, renewal-LFU increases the number of DNS
messages in direct proportion to request overheads for both our
traces, and such increases of DNS messages must significantly
enlarge the overall Internet traffic in terms of flow because DNS
messages already takes huge portion of the whole Internet traf-
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fic. Today, DNS messages take as much as 10% to 40% of the
overall Internet traffic in terms of flow.

Fig. 12 presents the relative quantities in bytes consumed,
varying the relative increase in requests for our traces. RUP-
LEU also reduces the bytes consumed for message transmis-
sions by the DNS cache policy, while renewal-LFU increases
them. The first reason is that an RUP question piggybacked by
RUP has a much lighter weight than an additional DNS query
issued by renewal in terms of byte consumption. Specifically,
each RUP question and answer require about 18.5 bytes, while
a DNS query does about 33.2 bytes, and a DNS response does
about 173.0 bytes for our traces. That is, the weight of an RUP
question needs only 18.0% ({18.5+18.5) / (33.2+173.0)) of that
of an additional DNS query in terms of byte consumption. The
second reason is that, as we mentioned above, renewal requires
more requests to refresh an expired cached record than RUP. As
a result, RUP-LFU decreases the bytes consumed for message
transmissions by the DNS cache policy as much as about 20.7%
at the request overhead of 1.39 for the KAIST trace and about
16.5% at the request overhead of 1.32 for the Yonsei trace, while
renewal-LFU increases in direct proportion to request overheads
for both our traces.

For deployment, RUP requires changes on requesting and re-
quested DNS servers because DNS servers requesting an RUP
message should be able to piggyback RUP questions onto DNS
queries and requested DNS servers must be able to recognize
and respond RUP questions, while renewal needs only a change
on requesting DNS servers because it uses normal DNS queries
and response messages to refresh cached records at their expi-
ration times. However, RUP is interoperable with the current
DNS because it exploits unused fields of the existing DNS mes-
sage format to piggyback expired cached records.

V1. CONCLUSION

With domain name server (DNS) resolutions being recog-
nized as a critical performance bottleneck of Internet name-
based applications such as the World Wide Web, several ap-
proaches to addressing this problem have been explored. Al-
though contributing to reducing DNS resolution time, they incur
additional DNS messages. In this paper, we propose a scheme
named renewal using piggyback (RUP) to reduce DNS resolu-
tion time without incurring additional DNS messages. RUP re-
freshes expired cached records by simply piggybacking them
onto solicited DNS queries instead of issuing additional DNS
queries. Simulation results based on two large independent DNS
traces show that our best RUP policy much reduces not only the
DNS resolution time but also the DNS traffic. Moreover, such
improvements can be ensured regardless of the variation of time-
to-live (TTL) value. In comparison with renewal, RUP reduces
the DNS resolution time more efficiently. It also remarkably de-
creases the DNS traffic, while renewal increases in proportion
to the number of refreshed records.
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