• Title/Summary/Keyword: DNPH 분석

Search Result 27, Processing Time 0.026 seconds

Determination of Formaldehyde in Cosmetics Using a Convenient DNPH Derivatization Procedure Followed by HPLC Analysis (간편한 DNPH 유도체화 HPLC 분석법을 이용한 화장품 중 포름알데하이드 분석)

  • Choi, Jongkeun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.1
    • /
    • pp.65-73
    • /
    • 2016
  • Korea Food and Drug Administration (KFDA) has officially announced 2,4-dinitrophenylhydrazine (DNPH) derivatization - high performance liquid chromatography (HPLC) methods for analysis of formaldehyde. This study was conducted to develop a convenient derivatization method for cosmetics by improving complex pre-treatment procedures included in KFDA method. To simplify pre-treatment procedures of KFDA method, reaction conditions including pH, time and temperature were optimized. This pre-treatment method does not require complicate pre-treatment steps of KFDA method such as pH adjustment of test solution with acetate buffer (pH 5.0), solvent-solvent partitioning with dichloromethane and concentrating procedure with vacuum evaporator. Formaldehyde-dinitrophenylhydrazone (formaldehyde-DNP) product produced by derivatization reaction was separated and quantified with a reversed-phase HPLC, which was slightly modified with KFDA method. The linearity test showed good results with 0.9999 of correlation coefficient ($r^2$) in the range of 2 ~ 40 ppm of standard solutions. In this method, limit of detection (LOD) and limit of quantitation (LOQ) values for formaldehyde were 0.2 ppm and 0.5 ppm, respectively. In addition, recovery test demonstrated that the method was also accurate and reproducible. Therefore, the proposed method can be applicable to rapid analysis of formaldehyde in cosmetics.

Analysis of formaldehyde using DNPH cartridge/LC-MS in the Ban-Woll.Shi-Hwa Industrial Complex (DNPH cartridge/LC-MS 방법에 의한 반월.시화산업단지의 폼알데하이드 분석에 관한 연구)

  • Cho Deok-Hee;Song Il-Seok;Kim In-Gu;Kim Woong-Soo;Kim Jong-Bo;Kim Tae-Hyun;Hwang Sun-Min;Nam Woo-Kyong
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.1 s.59
    • /
    • pp.35-43
    • /
    • 2006
  • Formaldehyde is important because of their irritant and toxic properties, mutagenicity and carcinogenicity. In this study, liquid chromatography-mass spectrometry (LC-MS) is used for the analysis of formaldehyde after derivatization with 2,4-dinitrophenylhydrazine (DNPH) cartridge. Analytical parameters such as linearity, repeatability and minimum detection limit were evaluated. The linearity ($r^2$) was 0.9997 when analyte concentration ranges from 25 to $200{\mu}g/l$. The relative standard deviation (%RSD) was 1.25 % for concentration of $200{\mu}g/l$. The minimum detection limit (MDL) was 0.73 ppbv. It was shown that LC-MS method has a great potential for formaldehyde analysis. The results of formaldehyde from the survey of Ban-Woll and Shi-Hwa Industrial Complex samples, the highest level was 6.20, 3.93 ppb, respectively. The highest emission level of formaldehyde at chemical plants in the Ban-Woll' Shi-Hwa Industrial Complex was 5421.25 ppb.

Formaldehyde Monitoring of Hygiene Products in Domestic Market (국내 유통 위생용품 중 포름알데히드 잔류량 모니터링)

  • Na, Young-Ran;Kwon, Hyeon-Jeong;Cho, Hyun-Nho;Kim, Hyeon-Jin;Park, Yon-Koung;Park, Sung-Ah;Lee, Seong-Ju;Kang, Jung-Mi
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.3
    • /
    • pp.225-233
    • /
    • 2020
  • By the standards and specifications for hygiene products, three test methods for formaldehyde are specified for each item type of hygiene product. After derivatization using acetylacetone and 2,4-dinitrophenylhydrazine (2,4-DNPH), formaldehyde is analyzed by spectrophotometer and high-performance liquid chromatography (HPLC). Validation of the three test methods was performed on tissue, diaper lining and waterproof layer, and panty liner products. The results of linearity (R2), limit of detection (LOD), limit of quantification (LOQ), recovery rate (%) and reproducibility (%), showed that all three methods are suitable for analyzing formaldehyde in hygiene products. After derivatization with 2,4-DNPH and cetylacetone, formaldehyde was analyzed at 0, 3, 6, 9, 24 and 48 hours by HPLC. Formaldehyde derivatized with 2,4-DNPH showed no statistically significant change in formaldehyde peak area over time (P>0.05). But, acetylacetone-derivatizated formaldehyde showed a negative correlation coefficient (r) over time (P<0.01). We investigated the residual amounts of formaldehyde in 205 hygiene products distributed in Busan. Among 74 disposable diaper products tested, 73 had low concentrations of formaldehyde (0.13-29.87 mg/kg). Moreover, formaldehyde was not detected in any of 78 tissue, 27 disposable paper towel, 12 disposable dishcloth, 7 paper cup, one brand of paper straw and 6 disposable napkin products.

Measurement of Aldehydes Gases in the Atmosphere by using High Efficiency Diffusion Scrubber coupled HPLC (고효율 확산 스크러버-HPLC를 이용한 대기중 알데히드 기체의 자동 분석)

  • 박영순;이동수
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.273-273
    • /
    • 2002
  • 대기 중 기체상 알데히드와 케톤류 등의 자동분석을 개발하고 이를 실제 대기 분석에 응용하였다. 본 분석장치는 분석 기체를 흡수 농축하는 확산 스크러버와 홉수액을 분석하는 고성능 액체크로마토 그래피로 구성되어 있다. 분석기체는 스크러버 속에서 기체와 반대방향으로 흐르는 DNPH 흡수액에 흡수되어 하이드라존을 형성하고 HPLC에서 분리 검출된다. 표준편차 3배로 정의한 본 방법의 검출한계는 수ppt로 매우 낮아 환경대기의 분석이 가능하다. (중략)

  • PDF

Aldehyde compounds analysis in air by Solid Phase Microextraction (SPME를 이용한 대기중 미량 악취성 Aldehyde 화합물의 분석)

  • 허귀석;유혜경;홍진희;신호상
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.350-351
    • /
    • 2000
  • 알데히드는 여러 가지 악취물질중의 하나로서 공기 중에 미량으로 존재하면서 냄새를 일으키며, 건강 위해성도 큰 물질이다. 본 연구에서는 휘발성이 강하면서 건강에 유해하여 문제가 되고 있는 이러한 aldehyde 화합물을 간편하게 분석할 수 있는 방법을 개발하고저 하였다. 기존의 aldehyde 분석에서는 알데히드를 DNPH와 같은 유도체로서 변환시킨 뒤에 주로 HPLC로 분석하는 방법을 사용하였다. 이 방법은 보편적으로 많이 알려져 있으나 HPLC가 갖고 있는 단점(크로마토그파피의 낮은 분해능, 긴 분석시간, 다량의 고가 HPLC용매 소모)을 안고 사용해야 하는 불편한 점도 있다. (중략)

  • PDF

Analysis and risk assessment of formaldehyde in water from water purification plant in korea (국내 정수장 먹는 물 중 폼알데히드 함유실태 조사 및 위해성 평가 연구)

  • Chae, Hyojin;Kim, Hyun Ku;Kim, Seungki;Pyo, Heesoo;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.386-394
    • /
    • 2009
  • Formaldehyde is used in lether manufacture, a dry plate and an explosive. It is by-product of ozonizing process in filtration plant. The effects of exposure are eye pruritus, tickle, runing nose, blocking nasal passages and headache. It also makes a dried throat and causes inflammation. It is classified as B1 group for inhalation by US. EPA, which can cause cancer in human. For analysis of formaldehyde, formaldehydes-DNPH derivative was extracted with solid cartridge and was analyzed by High Performance Liquid Chromatography/Diode Array Detector (HPLC/DAD). The detection limit was $3{\mu}g/L$ and the recoveries were 72.3~109.1% (RSD 2.9~11.5%). Water samples were collected in four Korean rivers, four times per year seasonally for 10 years from 1998 to 2007. The monitoring results were 48.8% (630/1291), $5.15{\sim}101.9{\mu}g/L$ in purified water. Because of non-carcinogen in drinking water, hazard index is calculated with RfD. Results of excess cnacer risk was below 1 and was considered as safe value.

Sample Development for Quality Control of Formaldehyde and Proficiency Analytical Testing (정도관리용 포름알데히드 시료개발 및 분석능력평가)

  • Park, Hae Dong;Jang, Miyeon;Park, Seunghyun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.1
    • /
    • pp.58-66
    • /
    • 2020
  • Objectives: The objective of this study was to develop formaldehyde samples for quality control (QC) and to test the applicability of proficiency analytical testing in Korea. Methods: We made formaldehyde samples with certified standard solutions (formaldehyde in water or acetonitrile) and 2,4-dinitrophenylhydrazine (2,4-DNPH)-coated silicagel tubes. Four levels of formaldehyde concentration were tested for storage stability at room temperature and at 4℃ over three months. Analytical proficiency testing was performed with four or 36 institutes. Results: Formaldehyde sample tubes were easily made through the injection of standard solutions and the average efficiencies of recovery were 95-101%. The coefficients of variation (CV) of the formaldehyde samples were 1.39-2.55%. The recovery efficiencies fell between 90% and 110% at the concentration range of 1-10 ㎍/sample over three months storage at refrigerated and room temperature. The CVs were less than 5% in the proficiency analytical testing. By adjusted proficient ranges, 64% of the results of the second proficiency analytical testing were acceptable. Conclusions: The formaldehyde samples made by injection on 2,4-DNPH-coated silicagel tubes were stable and applicable for quality control.

Adsorption of Formaldehyde by Wood Charcoal-Based Building Materials (목탄계 건축자재에 의한 포름알데히드 흡착)

  • Lee, Oh-Kyu;Choi, Joon-Weon;Jo, Tae-Su;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.61-69
    • /
    • 2007
  • The building materials used for improving indoor air quality, the wood charcoal mixed with cement mortar or natural water paint were examined for their potential removing ability of formaldehyde. After the reaction of samples with formaldehyde in the glass flasks designed in our lab, the remaining formaldehyde was collected using DNPH (2,4-dinitrophenyl hydrazine) cartridges, and their concentration was determined using HPLC. From the results, it was found that the removing amount of formaldehyde per one gram sample containing 5, 10, or 15% of wood charcoal was more than three times compared to that of control (100% cement mortar or water paint). Their elimination percentages from the initial formaldehyde was about 80~90%. The experimental results for wood charcoal-water paint showed a similar trend with those of wood charcoal-cement mortar samples. Their elimination percentages from the initial formaldehyde was about 90%. It is proposed that formaldehyde is adsorbed on the adsorbed 'O' or 'OH' groups in the graphene layers formed through the re-arrangement of lignocellulose in the wood during the carbonization procedure.

A Study of Calibration Bias in the Analysis of Airborne Carbonyl Compounds between Gaseous and Liquid-phase Standards by High Performance Liquid Chromatography (HPLC) (대기 중 Carbonyl 성분들의 검량 분석 기술에 대한 연구: 액상 대비 기체상 표준시료의 오차발생 특성 연구)

  • Lee, Min-Hee;Kim, Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.1
    • /
    • pp.52-58
    • /
    • 2012
  • In this study, the effect of standard phase difference in calibration of carbonyl compounds (CC) was evaluated by using their standards prepared in both gaseous and liquid phase. For this analysis, standards in both phases were prepared for 6 different CCs (formaldehyde (FA), acetaldehyde (AA), propionaldehyde (PA), butyraldehyde (BA), isovaleraldehyde (IA) and valeraldehyde (VA)) at similar concentration levels. Their gaseous standard was calibrated after derivatization with three types of DNPH cartridge, and their calibration results were compared against liquid-phase standards. Although there was a strong compatibility between 2 phases for CCs with lower molecular weights (e.g., formaldehyde and acetaldehyde), it was not the case for the heavier CCs. The results of our analysis indicate that the analytical bias of the heavier CCs can be significantly large (by more than a few tens of %). As a result, underestimation of hevier CCs can be significant, if their gaseous samples are quantified by liquid phase standard.

Characteristics for VOCs and aldehydes emission rates from architectural flooring (건축용 바닥재로부터의 VOCs와 Aldehydes 방출 특성)

  • Jang, Seong-Ki;Kim, Mi-Hyun;Seo, Soo-Yun;Lee, Woo-Suk;Lim, Jun-Ho;Lim, Jeong-Yun
    • Analytical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.544-552
    • /
    • 2006
  • Emission tests were carried out to investigate the characteristics of concentration according to flooring sort using small chamber method. The target Volatile Organic Compounds (VOC) included 27 individual compounds of environmental concern, which were determined by adsorption sampling and thermal desorption coupled with GC/MS method and by DNPH cartridge/HPLC method. The emission factor of Total Volatile Organic Compounds (TVOC) and Formaldehyde (HCHO) was detected $0.3mg/m^2{\cdot}h$ and $0.2mg/m^2{\cdot}h$ respectively, and the floorings of 37 (9 PVC Tile, 10 PVC Sheet, 18 Flooring) were satisfied emission standard. TVOC emission factor appeared in order of concentration of PVC Sheet, PVC Tile, and floor flooring, while HCHO was detected very high emission factor (as $0.4mg/m^2{\cdot}h$) at floor flooring above PVC series (as $0.001mg/m^2{\cdot}h$).