• Title/Summary/Keyword: DNA-methylation

Search Result 428, Processing Time 0.024 seconds

Cold-induced ginsenosides accumulation is associated with the alteration in DNA methylation and relative gene expression in perennial American ginseng (Panax quinquefolius L.) along with its plant growth and development process

  • Hao, Mengzhen;Zhou, Yuhang;Zhou, Jinhui;Zhang, Min;Yan, Kangjiao;Jiang, Sheng;Wang, Wenshui;Peng, Xiaoping;Zhou, San
    • Journal of Ginseng Research
    • /
    • v.44 no.5
    • /
    • pp.747-755
    • /
    • 2020
  • Background: Ginsenosides accumulation responses to temperature are critical to quality formation in cold-dependent American ginseng. However, the studies on cold requirement mechanism relevant to ginsenosides have been limited in this species. Methods: Two experiments were carried out: one was a multivariate linear regression analysis between the ginsenosides accumulation and the environmental conditions of American ginseng from different sites of China and the other was a synchronous determination of ginsenosides accumulation, overall DNA methylation, and relative gene expression in different tissues during different developmental stages of American ginseng after experiencing different cold exposure duration treatments. Results: Results showed that the variation of the contents as well as the yields of total and individual ginsenosides Rg1, Re, and Rb1 in the roots were closely associated with environmental temperature conditions which implied that the cold environment plays a decisive role in the ginsenoside accumulation of American ginseng. Further results showed that there is a cyclically reversible dynamism between methylation and demethylation of DNA in the perennial American ginseng in response to temperature seasonality. And sufficient cold exposure duration in winter caused sufficient DNA demethylation in tender leaves in early spring and then accompanied the high expression of flowering gene PqFT in flowering stages and ginsenosides biosynthesis gene PqDDS in green berry stages successively, and finally, maximum ginsenosides accumulation occurred in the roots of American ginseng. Conclusion: We, therefore, hypothesized that cold-induced DNA methylation changes might regulate relative gene expression involving both plant development and plant secondary metabolites in such cold-dependent perennial plant species.

Newly developed MSAP analysis reveals the different polymorphism patterns in transgenic tobacco plants with the dsRNA MET1 gene

  • Oh, Yun Jung;Chung, Hee;Yu, Jae Gyeong;Park, Young Doo
    • Plant Biotechnology Reports
    • /
    • v.3 no.2
    • /
    • pp.139-145
    • /
    • 2009
  • DNA methylation is known to play an important role in the regulation of gene expression in eukaryotes. In this study, we isolated NtMET1 from Nicotiana tabacum cv. Havana (SR1) and obtain transgenic plants that reduced MET1 expression level with the double-strand RNA (dsRNA) MET1 gene. Transgenic tobacco plants showed dwarf and abnormal flower development when compared with the wild type. Using methylation-sensitive amplified polymorphism (MSAP) analysis, the patterns of cytosine methylation in transformed plants and the wild type were compared. MseI/HpaII selection primers showed an interesting polymorphism, and 153 DNA bands of interest were detected. Among these, 30 selective fragments were sequenced and analyzed with a BLAST search by successful MSAP modifications. The homology search showed that the transposons and tandem repeated sequences were related to the phenotypes. These results suggested that the decreased degree of methylation by dsRNA strategy caused abnormal growth and development in N. tabacum.

DNA Methylation Change of IL-4 Gene from T Cell in Allergic Children (영유아기 아토피 환아에서 말초혈액 T 림프구에서 Interleukin-4 유전자의 DNA 메틸화 변화)

  • Oh, Jae Won;Yum, Myung Gul;Kim, Chang Ryul;Seol, In-Joon;Shin, Su A;Lee, Ha Baik;Jang, Se Jin
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.6
    • /
    • pp.634-639
    • /
    • 2005
  • Purpose : An understanding of the immunological process is required if primary prevention of atopic diseases is to be developed in early childhood. But, it is too hard to distinguish atopy from nonatopy under the age of two clinically, because the expression of phenotype and cytokines is vague in early childhood. We evaluated DNA methylation changes at Th2 interleukin-4 gene in peripheral blood from atopic children. Methods : We selected 15 allergic children(mild : eight, moderate to severe : seven) and seven normal controls by using family allergy scores and clinical histories. We measured Total IgE and Der f II specific IgE levels and cultured peripheral blood mononuclear cells with Der f II stimulation and extracted DNA from Der f II specific T cells. We examined the change of CpG methylation in DNA from atopic and nonatopic children. Results : In T cells from normal children, IL-4 DNA were predominantly methylated; otherwise, CpG demethylation occurred in Der f II specific T cells from allergic children. Conclusion : IL-4 DNA methylation changes occurred in T genes from allergic children and DNA methylation assay in early childhood.

Exocyclic GpC DNA methyltransferase from Celeribacter marinus IMCC12053 (Celeribacter marinus IMCC12053의 외향고리 GpC DNA 메틸트랜스퍼라아제)

  • Kim, Junghee;Oh, Hyun-Myung
    • Korean Journal of Microbiology
    • /
    • v.55 no.2
    • /
    • pp.103-111
    • /
    • 2019
  • DNA methylation is involved in diverse processes in bacteria, including maintenance of genome integrity and regulation of gene expression. CcrM, the DNA methyltransferase conserved in Alphaproteobacterial species, carries out $N^6$-adenine or $N^4$-cytosine methyltransferase activities using S-adenosyl methionine as a co-substrate. Celeribacter marinus IMCC12053 from the Alphaproteobacterial group was isolated from a marine environment. Single molecule real-time sequencing method (SMRT) was used to detect the methylation patterns of C. marinus IMCC12053. Gibbs motif sampler program was used to observe the conversion of adenosine of 5'-GANTC-3' to $N^6$-methyladenosine and conversion of $N^4$-cytosine of 5'-GpC-3' to $N^4$-methylcytosine. Exocyclic DNA methyltransferase from the genome of strain IMCC12053 was chosen using phylogenetic analysis and $N^4$-cytosine methyltransferase was cloned. IPTG inducer was used to confirm the methylation activity of DNA methylase, and cloned into a pQE30 vector using dam-/dcm- E. coli as the expression host. The genomic DNA and the plasmid carrying methylase-encoding sequences were extracted and cleaved with restriction enzymes that were sensitive to methylation, to confirm the methylation activity. These methylases protected the restriction enzyme site once IPTG-induced methylases methylated the chromosome and plasmid, harboring the DNA methylase. In this study, cloned exocyclic DNA methylases were investigated for potential use as a novel type of GpC methylase for molecular biology and epigenetics.

Loss of Expression of Cyclin D2 by Aberrant DNA Methylation: a Potential Biomarker in Vietnamese Breast Cancer Patients

  • Truong, Phuong Kim;Lao, Thuan Duc;Doan, Thao Phuong Thi;Huyen Le, Thuy Ai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2209-2213
    • /
    • 2015
  • DNA methylation of tumor suppressor gene promoters is the most frequent phenomenon leading to inactivation of function, consequently driving malignant cell transformation. Cyclin D2 is implicated in tumor suppression. In our study, we carried out the MSP assay to evaluation the methylation status at CpG islands in the cyclin D2 promoter in breast cancer cases from the Vietnamese population. The results showed that the frequency of methylation reached 62.1% (59 of 95 breast cancer tumors), but was low in non-cancer specimens at 10% (2 of 20 non-cancer specimens). Additionally, with an RR (relative risk) and OR (odd ratios) of 6.21 and 14.8, DNA hypermethylation of cyclin D2 increased the possibility of malignant transformation. Our results confirmed the cyclin D2 hypermethylation could be used as the potential biomarker which could be applied in prognosis and early diagnosis of Vietnamese breast cancer patients.

Investigation of Deletion Variation and Methylation Patterns in the 5' LTR of Porcine Endogenous Retroviruses

  • Jung, K.C.;Simond, D.M.;Moran, C.;Hawthorne, W.J.;Jeon, J.T.;Jin, D.I.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.11
    • /
    • pp.1572-1575
    • /
    • 2008
  • The xenotransplantation of pig organs and cells can be related with a risk of transmission of infectious diseases to human. Previous findings indicate that the regulatory region of PERV for retroviral transcription, replication and integration into the cellular DNA is located on the 5' Long Terminal Repeat (LTR). The objective of this study is the investigation of methylation and deletion status of the PERV 5' LTR region which can be used for regulating PERV expression. We compared the sequences of genomic DNA and bisulfite-treated genomic DNA from PK-15 cells expressing PERV to observe the methylation status of the 5' LTR. Our results showed that the CpG sites of U3 were methylated and methylation was inconsistent in the R and U5 regions. Also, variable numbers of 18 bp repeats and 21 bp repeats were detected on 5' LTR by sequencing analysis. The consistent U3 methylation might be indicative of host suppression of expression of the retroviruses.

MET1-Dependent DNA Methylation Represses Light Signaling and Influences Plant Regeneration in Arabidopsis

  • Shim, Sangrea;Lee, Hong Gil;Seo, Pil Joon
    • Molecules and Cells
    • /
    • v.44 no.10
    • /
    • pp.746-757
    • /
    • 2021
  • Plant somatic cells can be reprogrammed into a pluripotent cell mass, called callus, which can be subsequently used for de novo shoot regeneration through a two-step in vitro tissue culture method. MET1-dependent CG methylation has been implicated in plant regeneration in Arabidopsis, because the met1-3 mutant exhibits increased shoot regeneration compared with the wild-type. To understand the role of MET1 in de novo shoot regeneration, we compared the genome-wide DNA methylomes and transcriptomes of wildtype and met1-3 callus and leaf. The CG methylation patterns were largely unchanged during leaf-to-callus transition, suggesting that the altered regeneration phenotype of met1-3 was caused by the constitutively hypomethylated genes, independent of the tissue type. In particular, MET1-dependent CG methylation was observed at the blue light receptor genes, CRYPTOCHROME 1 (CRY1) and CRY2, which reduced their expression. Coexpression network analysis revealed that the CRY1 gene was closely linked to cytokinin signaling genes. Consistently, functional enrichment analysis of differentially expressed genes in met1-3 showed that gene ontology terms related to light and hormone signaling were overrepresented. Overall, our findings indicate that MET1-dependent repression of light and cytokinin signaling influences plant regeneration capacity and shoot identity establishment.

Antimicrobial resistance in Klebsiella pneumoniae: identification of bacterial DNA adenine methyltransferase as a novel drug target from hypothetical proteins using subtractive genomics

  • Umairah Natasya Mohd Omeershffudin;Suresh Kumar
    • Genomics & Informatics
    • /
    • v.20 no.4
    • /
    • pp.47.1-47.13
    • /
    • 2022
  • Klebsiella pneumoniae is a gram-negative bacterium that is known for causing infection in nosocomial settings. As reported by the World Health Organization, carbapenem-resistant Enterobacteriaceae, a category that includes K. pneumoniae, are classified as an urgent threat, and the greatest concern is that these bacterial pathogens may acquire genetic traits that make them resistant towards antibiotics. The last class of antibiotics, carbapenems, are not able to combat these bacterial pathogens, allowing them to clonally expand antibiotic-resistant strains. Most antibiotics target essential pathways of bacterial cells; however, these targets are no longer susceptible to antibiotics. Hence, in our study, we focused on a hypothetical protein in K. pneumoniae that contains a DNA methylation protein domain, suggesting a new potential site as a drug target. DNA methylation regulates the attenuation of bacterial virulence. We integrated computational-aided drug design by using a bioinformatics approach to perform subtractive genomics, virtual screening, and fingerprint similarity search. We identified a new potential drug, koenimbine, which could be a novel antibiotic.

UHRF1 Induces Methylation of the TXNIP Promoter and Down-Regulates Gene Expression in Cervical Cancer

  • Kim, Min Jun;Lee, Han Ju;Choi, Mee Young;Kang, Sang Soo;Kim, Yoon Sook;Shin, Jeong Kyu;Choi, Wan Sung
    • Molecules and Cells
    • /
    • v.44 no.3
    • /
    • pp.146-159
    • /
    • 2021
  • DNA methylation, and consequent down-regulation, of tumour suppressor genes occurs in response to epigenetic stimuli during cancer development. Similarly, human oncoviruses, including human papillomavirus (HPV), up-regulate and augment DNA methyltransferase (DNMT) and histone deacetylase (HDAC) activities, thereby decreasing tumour suppressor genes (TSGs) expression. Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1), an epigenetic regulator of DNA methylation, is overexpressed in HPV-induced cervical cancers. Here, we investigated the role of UHRF1 in cervical cancer by knocking down its expression in HeLa cells using lentiviral-encoded short hairpin (sh)RNA and performing cDNA microarrays. We detected significantly elevated expression of thioredoxin-interacting protein (TXNIP), a known TSG, in UHRF1-knockdown cells, and this gene is hypermethylated in cervical cancer tissue and cell lines, as indicated by whole-genome methylation analysis. Up-regulation of UHRF1 and decreased TXNIP were further detected in cervical cancer by western blot and immunohistochemistry and confirmed by Oncomine database analysis. Using chromatin immunoprecipitation, we identified the inverted CCAAT domain-containing UHRF1-binding site in the TXNIP promoter and demonstrated UHRF1 knockdown decreases UHRF1 promoter binding and enhances TXNIP expression through demethylation of this region. TXNIP promoter CpG methylation was further confirmed in cervical cancer tissue by pyrosequencing and methylation-specific polymerase chain reaction. Critically, down-regulation of UHRF1 by siRNA or UHRF1 antagonist (thymoquinone) induces cell cycle arrest and apoptosis, and ubiquitin-specific protease 7 (USP7), which stabilises and promotes UHRF1 function, is increased by HPV viral protein E6/E7 overexpression. These results indicate HPV might induce carcinogenesis through UHRF1-mediated TXNIP promoter methylation, thus suggesting a possible link between CpG methylation and cervical cancer.

Partial Sequencing and Characterization of Porcine DNA Methyltransferase I cDNA

  • Lee, Y.Y.;Kim, M.S.;Park, J.J.;H.Y. Kang;Y.M. Chang;Yoon, J.T.;K.S. Min
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.84-84
    • /
    • 2003
  • DNA methylation is involved in epigenetic processes such as X-chromosome inactivation, imprinting and silencing of transposons. DNA methylation is a highly plastic and critical component of mammalian development The DNA methyltransferases (Dnmts) are responsible for the generation of genomic methylation patterns, which lead to transcriptional silencing. The maintenance DNA methyltransferase enzyme, Dnmt 1, and the de novo methyltransferase, Dnmt3a and Dnmt3b, are indispensable for development because mice homozygous for the targeted disruption of any of these genes are not viable. The occurrence of DNA methylation is not random, and it can result in gene silencing The mechanisms underlying these processes are poorly understood. It is well established that DNA methylation and histone deacetylation operate along a common mechanistic pathway to repress transcription through the action of methyl-binding domain proteins (MBDs), which are components of, or recruit, histone deacetylase (HDAC) complexes to methylated DNA. As a basis for future studies on the role of the DNA-methyl-transferase in porcine development, we have isolated and characterized a partial cDNA coding for the porcine Dnmt1. Total RNA of testis, lung and ovary was isolated with TRlzol according to the manufacture's specifications. 5 ug of total RNA was reverse transcribed with Super Script II in the presence of porcine Dnmt 1 specific primers. Standard PCRs were performed in a total volume of 50 ul with cDNA as template. Two DNA fragmenets in different position were produced about 700bp, 1500bp and were cloned into pCR II-TOPO according to the manufacture's specification. Assembly of all sequences resulted in a cDNA from 158bp of 5'to 4861bp of 3'compare with the known human maintenance methyltransferase. Now, we are cloning the unknown Dnmt 1 region by 5'-RACE method and expression of Dnmt 1 in tissues from adult porcine animals.

  • PDF