• Title/Summary/Keyword: DNA-damage response

Search Result 216, Processing Time 0.024 seconds

Drosophila melanogaster: a Model for the Study of DNA Damage Checkpoint Response

  • Song, Young-Han
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.167-179
    • /
    • 2005
  • The cells of metazoans respond to DNA damage by either arresting their cell cycle in order to repair the DNA, or by undergoing apoptosis. This response is highly conserved across species, and many of the genes involved in this DNA damage response have been shown to be inactivated in human cancers. This suggests the importance of DNA damage response with regard to the prevention of cancer. The DNA damage checkpoint responses vary greatly depending on the developmental context, cell type, gene expression profile, and the degree and nature of the DNA lesions. More valuable information can be obtained from studies utilizing whole organisms in which the molecular basis of development has been well established, such as Drosophila. Since the discovery of the Drosophila p53 orthologue, various aspects of DNA damage responses have been studied in Drosophila. In this review, I will summarize the current knowledge on the DNA damage checkpoint response in Drosophila. With the ease of genetic, cellular, and cytological approaches, Drosophila will become an increasingly valuable model organism for the study of mechanisms inherent to cancer formation associated with defects in the DNA damage pathway.

Mad2B forms a complex with Cdc20, Cdc27, Rev3 and Rev1 in response to cisplatin-induced DNA damage

  • Ju Hwan Kim;Rajnikant Patel
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.5
    • /
    • pp.427-436
    • /
    • 2023
  • Mitotic arrest deficient 2 like 2 (Mad2L2, also known as Mad2B), the human homologue of the yeast Rev7 protein, is a regulatory subunit of DNA polymerase ζ that shares high sequence homology with Mad2, the mitotic checkpoint protein. Previously, we demonstrated the involvement of Mad2B in the cisplatin-induced DNA damage response. In this study, we extend our findings to show that Mad2B is recruited to sites of DNA damage in human cancer cells in response to cisplatin treatment. We found that in undamaged cells, Mad2B exists in a complex with Polζ-Rev1 and the APC/C subunit Cdc27. Following cisplatin-induced DNA damage, we observed an increase in the recruitment of Mad2B and Cdc20 (the activators of the APC/C), to the complex. The involvement of Mad2B-Cdc20-APC/C during DNA damage has not been reported before and suggests that the APC/C is activated following cisplatin-induced DNA damage. Using an in vitro ubiquitination assay, our data confirmed Mad2B-dependent activation of APC/C in cisplatin-treated cells. Mad2B may act as an accelerator for APC/C activation during DNA damage response. Our data strongly suggest a role for Mad2B-APC/C-Cdc20 in the ubiquitination of proteins involved in the DNA damage response.

Genetic Screen for Genes Involved in Chk2 Signaling in Drosophila

  • Park, Suk-Young;Song, Young-Han
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.350-355
    • /
    • 2008
  • Chk2 is a well characterized protein kinase with key roles in the DNA damage response. Chk2 is activated by phosphorylation following DNA damage, and relays that signal to various substrate proteins to induce cell cycle arrest, DNA repair, and apoptosis. In order to identify novel components of the Chk2 signaling pathway in Drosophila, we screened 2,240 EP misexpression lines for dominant modifiers of an adult rough eye phenotype caused by Chk2 overexpression in postmitotic cells of the eye imaginal disc. The rough eye phenotype was suppressed by mutation of the ATM kinase, a well-described activator of Chk2. Twenty-five EP modifiers were identified (three enhancers and 22 suppressors), none of which correspond to previously known components of Chk2 signaling. Three EPs caused defects in G2 arrest after irradiation with incomplete penetrance when homozygous, and are likely directly involved in the response to DNA damage. Possible roles for these modifiers in the DNA damage response and Chk2 signaling are discussed.

Silibinin Inhibits LPS-Induced Macrophage Activation by Blocking p38 MAPK in RAW 264.7 Cells

  • Youn, Cha Kyung;Park, Seon Joo;Lee, Min Young;Cha, Man Jin;Kim, Ok Hyeun;You, Ho Jin;Chang, In Youp;Yoon, Sang Pil;Jeon, Young Jin
    • Biomolecules & Therapeutics
    • /
    • v.21 no.4
    • /
    • pp.258-263
    • /
    • 2013
  • We demonstrate herein that silibinin, a polyphenolic flavonoid compound isolated from milk thistle (Silybum marianum), inhibits LPS-induced activation of macrophages and production of nitric oxide (NO) in RAW 264.7 cells. Western blot analysis showed silibinin inhibits iNOS gene expression. RT-PCR showed that silibinin inhibits iNOS, TNF-${\alpha}$, and $IL1{\beta}$. We also showed that silibinin strongly inhibits p38 MAPK phosphorylation, whereas the ERK1/2 and JNK pathways are not inhibited. The p38 MAPK inhibitor abrogated the LPS-induced nitrite production, whereas the MEK-1 inhibitor did not affect the nitrite production. A molecular modeling study proposed a binding pose for silibinin targeting the ATP binding site of p38 MAPK (1OUK). Collectively, this series of experiments indicates that silibinin inhibits macrophage activation by blocking p38 MAPK signaling.

Inactivation of Mad2B Enhances Apoptosis in Human Cervical Cancer Cell Line upon Cisplatin-Induced DNA Damage

  • Ju Hwan Kim;Hak Rim Kim;Rajnikant Patel
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.340-349
    • /
    • 2023
  • Mad2B (Mad2L2), the human homolog of the yeast Rev7 protein, is a regulatory subunit of DNA polymerase ζ that shares sequence similarity with the mitotic checkpoint protein Mad2A. Previous studies on Mad2B have concluded that it is a mitotic checkpoint protein that functions by inhibiting the anaphase-promoting complex/cyclosome (APC/C). Here, we demonstrate that Mad2B is activated in response to cisplatin-induced DNA damage. Mad2B co-localizes at nuclear foci with DNA damage markers, such as proliferating cell nuclear antigen and gamma histone H2AX (γ-H2AX), following cisplatin-induced DNA damage. However, unlike Mad2A, the binding of Mad2B to Cdc20 does not inhibit the activity of APC/C in vitro. In contrast to Mad2A, Mad2B does not localize to kinetochores or binds to Cdc20 in spindle assembly checkpoint-activated cells. Loss of the Mad2B protein leads to damaged nuclei following cisplatin-induced DNA damage. Mad2B/Rev7 depletion causes the accumulation of damaged nuclei, thereby accelerating apoptosis in human cancer cells in response to cisplatin-induced DNA damage. Therefore, our results suggest that Mad2B may be a critical modulator of DNA damage response.

Lycopene-Induced Hydroxyl Radical Causes Oxidative DNA Damage in Escherichia coli

  • Lee, Wonyoung;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1232-1237
    • /
    • 2014
  • Lycopene, which is a well-known red carotenoid pigment, has been drawing scientific interest because of its potential biological functions. The current study reports that lycopene acts as a bactericidal agent by inducing reactive oxygen species (ROS)-mediated DNA damage in Escherichia coli. Lycopene treatment elevated the level of ROS-in particular, hydroxyl radicals ($^*OH$)-which can damage DNA in E. coli. Lycopene-induced DNA damage in bacteria was confirmed and we also observed cell filamentation caused by cell division arrest, an indirect marker of the DNA damage repair system, in lycopene-treated E. coli. Increased RecA expression was observed, indicating activation of the DNA repair system (SOS response). To summarize, lycopene exerts its antibacterial effects by inducing $^*OH$-mediated DNA damage that cannot be ameliorated by the SOS response. Lycopene may be a clinically useful adjuvant for current antimicrobial therapies.

Role of RNA Polymerase II Carboxy Terminal Domain Phosphorylation in DNA Damage Response

  • Jeong Su-Jin;Kim Hye-Jin;Yang Yong-Jin;Seol Ja-Hwan;Jung Bo-Young;Han Jeong-Whan;Lee Hyang-Woo;Cho Eun-Jung
    • Journal of Microbiology
    • /
    • v.43 no.6
    • /
    • pp.516-522
    • /
    • 2005
  • The phosphorylation of C-terminal domain (CTD) of Rpb1p, the largest subunit of RNA polymerase II plays an important role in transcription and the coupling of various cellular events to transcription. In this study, its role in DNA damage response is closely examined in Saccharomyces cerevisiae, focusing specifically on several transcription factors that mediate or respond to the phosphorylation of the CTD. CTDK-1, the pol II CTD kinase, FCP1, the CTD phosphatase, ESS1, the CTD phosphorylation dependent cis-trans isomerase, and RSP5, the phosphorylation dependent pol II ubiquitinating enzyme, were chosen for the study. We determined that the CTD phosphorylation of CTD, which occurred predominantly at serine 2 within a heptapeptide repeat, was enhanced in response to a variety of sources of DNA damage. This modification was shown to be mediated by CTDK-1. Although mutations in ESS1 or FCP1 caused cells to become quite sensitive to DNA damage, the characteristic pattern of CTD phosphorylation remained unaltered, thereby implying that ESS1 and FCP1 play roles downstream of CTD phosphorylation in response to DNA damage. Our data suggest that the location or extent of CTD phosphorylation might be altered in response to DNA damage, and that the modified CTD, ESS1, and FCP1 all contribute to cellular survival in such conditions.

Cellular Dynamics of Rad51 and Rad54 in Response to Postreplicative Stress and DNA Damage in HeLa Cells

  • Choi, Eui-Hwan;Yoon, Seobin;Hahn, Yoonsoo;Kim, Keun P.
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.143-150
    • /
    • 2017
  • Homologous recombination (HR) is necessary for maintenance of genomic integrity and prevention of various mutations in tumor suppressor genes and proto-oncogenes. Rad51 and Rad54 are key HR factors that cope with replication stress and DNA breaks in eukaryotes. Rad51 binds to single-stranded DNA (ssDNA) to form the presynaptic filament that promotes a homology search and DNA strand exchange, and Rad54 stimulates the strand-pairing function of Rad51. Here, we studied the molecular dynamics of Rad51 and Rad54 during the cell cycle of HeLa cells. These cells constitutively express Rad51 and Rad54 throughout the entire cell cycle, and the formation of foci immediately increased in response to various types of DNA damage and replication stress, except for caffeine, which suppressed the Rad51-dependent HR pathway. Depletion of Rad51 caused severe defects in response to postreplicative stress. Accordingly, HeLa cells were arrested at the G2-M transition although a small amount of Rad51 was steadily maintained in HeLa cells. Our results suggest that cell cycle progression and proliferation of HeLa cells can be tightly controlled by the abundance of HR proteins, which are essential for the rapid response to postreplicative stress and DNA damage stress.

Role of RUNX Family Transcription Factors in DNA Damage Response

  • Samarakkody, Ann Sanoji;Shin, Nah-Young;Cantor, Alan B.
    • Molecules and Cells
    • /
    • v.43 no.2
    • /
    • pp.99-106
    • /
    • 2020
  • Cells are constantly exposed to endogenous and exogenous stresses that can result in DNA damage. In response, they have evolved complex pathways to maintain genomic integrity. RUNX family transcription factors (RUNX1, RUNX2, and RUNX3 in mammals) are master regulators of development and differentiation, and are frequently dysregulated in cancer. A growing body of research also implicates RUNX proteins as regulators of the DNA damage response, often acting in conjunction with the p53 and Fanconi anemia pathways. In this review, we discuss the functional role and mechanisms involved in RUNX factor mediated response to DNA damage and other cellular stresses. We highlight the impact of these new findings on our understanding of cancer predisposition associated with RUNX factor dysregulation and their implications for designing novel approaches to prevent cancer formation in affected individuals.

Inhibition Effects of Persicaria amphibia (L.) Delarbre on Oxidative DNA Damage via ATM/Chk2/p53 pathway

  • So-Yeon Han;Hye-Jeong Park;Jeong-Yong Park;Seo-Hyun Yun;Mi-Ji Noh;Soo-Yeon Kim;Tae-Won Jang;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.52-52
    • /
    • 2021
  • Persicaria amphibia as an England native plant, is a rhizomatous perennial, one of the rather amphibious plants. Its aquatic form contains water-soluble sugars, starch, and protein. P. amphibia have up to 18% tannins in stems and rhizomes. Previous studies have confirmed the anti-inflammatory activity of live bacteria roots, but no studies on bioactivity are known. DNA damage responses (DDRs) pathways are considered a crucial factor affecting the alleviation of cellular damage. The ataxia-telangiectasia mutated and Rad3 related (ATM) and checkpoint kinase 2 (Chk2) pathways are the main pathways of DNA damage response. Also, p53 is a key integrator of cellular response to oxidative DNA damage, contributing repair, or leading transcription including apoptosis. In the present study, we conducted an investigation into the inhibitory effects of P. amphibia on oxidative DNA damage for confirming potential to complementary medicine and therapies. In conclusion, P. amphibia can provide protective effects against double-stranded DNA break (DSB) caused by oxidative DNA damage.

  • PDF