DOI QR코드

DOI QR Code

Inactivation of Mad2B Enhances Apoptosis in Human Cervical Cancer Cell Line upon Cisplatin-Induced DNA Damage

  • Ju Hwan Kim (Department of Pharmacology, College of Medicine, Dankook University) ;
  • Hak Rim Kim (Department of Pharmacology, College of Medicine, Dankook University) ;
  • Rajnikant Patel (Department of Molecular and Cell Biology, University of Leicester)
  • Received : 2022.10.12
  • Accepted : 2022.12.19
  • Published : 2023.05.01

Abstract

Mad2B (Mad2L2), the human homolog of the yeast Rev7 protein, is a regulatory subunit of DNA polymerase ζ that shares sequence similarity with the mitotic checkpoint protein Mad2A. Previous studies on Mad2B have concluded that it is a mitotic checkpoint protein that functions by inhibiting the anaphase-promoting complex/cyclosome (APC/C). Here, we demonstrate that Mad2B is activated in response to cisplatin-induced DNA damage. Mad2B co-localizes at nuclear foci with DNA damage markers, such as proliferating cell nuclear antigen and gamma histone H2AX (γ-H2AX), following cisplatin-induced DNA damage. However, unlike Mad2A, the binding of Mad2B to Cdc20 does not inhibit the activity of APC/C in vitro. In contrast to Mad2A, Mad2B does not localize to kinetochores or binds to Cdc20 in spindle assembly checkpoint-activated cells. Loss of the Mad2B protein leads to damaged nuclei following cisplatin-induced DNA damage. Mad2B/Rev7 depletion causes the accumulation of damaged nuclei, thereby accelerating apoptosis in human cancer cells in response to cisplatin-induced DNA damage. Therefore, our results suggest that Mad2B may be a critical modulator of DNA damage response.

Keywords

Acknowledgement

We would like to thank Dr. Pablo Lara-Gonzalez to help in vitro ubiquitylation assay. This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) (NRF-2022R1A2C1012144 to J.H.K.).

References

  1. Bennett, E. J. and Harper, J. W. (2008) DNA damage: ubiquitin marks the spot. Nat. Struct. Mol. Biol. 15, 20-22. https://doi.org/10.1038/nsmb0108-20
  2. Boersma, V., Moatti, N., Segura-Bayona, S., Peuscher, M. H., van der Torre, J., Wevers, B. A., Orthwein, A., Durocher, D. and Jacobs, J. J. (2015) MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5' end resection. Nature 521, 537-540. https://doi.org/10.1038/nature14216
  3. Cahill, D. P., da Costa, L. T., Carson-Walter, E. B., Kinzler, K. W., Vogelstein, B. and Lengauer, C. (1999) Characterization of MAD2B and other mitotic spindle checkpoint genes. Genomics 58, 181-187. https://doi.org/10.1006/geno.1999.5831
  4. Chen, B.-R., Quinet, A., Byrum, A. K., Jackson, J., Berti, M., Thangavel, S., Bredemeyer, A. L., Hindi, I., Mosammaparast, N., Tyler, J. K., Vindigni, A. and Sleckman, B. P. (2019) XLF and H2AX function in series to promote replication fork stability. J. Cell Biol. 218, 2113-2123. https://doi.org/10.1083/jcb.201808134
  5. Chen, J. and Fang, G. (2001) MAD2B is an inhibitor of the anaphasepromoting complex. Genes Dev. 15, 1765-1770. https://doi.org/10.1101/gad.898701
  6. Cheung, H. W., Chun, A. C., Wang, Q., Deng, W., Hu, L., Guan, X. Y., Nicholls, J. M., Ling, M. T., Chuan Wong, Y., Tsao, S. W., Jin, D. Y. and Wang, X. (2006) Inactivation of human MAD2B in nasopharyngeal carcinoma cells leads to chemosensitization to DNAdamaging agents. Cancer Res. 66, 4357-4367. https://doi.org/10.1158/0008-5472.CAN-05-3602
  7. Clairmont, C. S. and D'Andrea, A. D. (2021) REV7 directs DNA repair pathway choice. Trends Cell Biol. 31, 965-978. https://doi.org/10.1016/j.tcb.2021.05.009
  8. Collins, P. L., Purman, C., Porter, S. I., Nganga, V., Saini, A., Hayer, K. E., Gurewitz, G. L., Sleckman, B. P., Bednarski, J. J., Bassing, C. H. and Oltz, E. M. (2020) DNA double-strand breaks induce H2Ax phosphorylation domains in a contact-dependent manner. Nat. Commun. 11, 3158.
  9. Dasari, S. and Tchounwou, P. B. (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol. 740, 364-378. https://doi.org/10.1016/j.ejphar.2014.07.025
  10. Deacon, K. and Blank, J. L. (1999) MEK kinase 3 directly activates MKK6 and MKK7, specific activators of the p38 and c-Jun NH2-terminal kinases. J. Biol. Chem. 274, 16604-16610. https://doi.org/10.1074/jbc.274.23.16604
  11. Deacon, K., Mistry, P., Chernoff, J., Blank, J. L. and Patel, R. (2003) p38 Mitogen-activated protein kinase mediates cell death and p21-activated kinase mediates cell survival during chemotherapeutic drug-induced mitotic arrest. Mol. Biol. Cell 14, 2071-2087. https://doi.org/10.1091/mbc.e02-10-0653
  12. Fang, G. (2002) Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol. Biol. Cell 13, 755-766. https://doi.org/10.1091/mbc.01-09-0437
  13. Gan, G. N., Wittschieben, J. P., Wittschieben, B. O. and Wood, R. D. (2008) DNA polymerase zeta (pol zeta) in higher eukaryotes. Cell Res. 18, 174-183. https://doi.org/10.1038/cr.2007.117
  14. Gibbs, P. E., McDonald, J., Woodgate, R. and Lawrence, C. W. (2005) The relative roles in vivo of Saccharomyces cerevisiae Pol eta, Pol zeta, Rev1 protein and Pol32 in the bypass and mutation induction of an abasic site, T-T (6-4) photoadduct and T-T cis-syn cyclobutane dimer. Genetics 169, 575-582. https://doi.org/10.1534/genetics.104.034611
  15. Gillotin, S. (2018) Isolation of chromatin-bound proteins from subcellular fractions for biochemical analysis. Bio-protocol 8, e3035.
  16. Guo, Z., Kumagai, A., Wang, S. X. and Dunphy, W. G. (2000) Requirement for Atr in phosphorylation of Chk1 and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts. Genes Dev. 14, 2745-2756. https://doi.org/10.1101/gad.842500
  17. Harper, J. W. and Elledge, S. J. (2007) The DNA damage response: ten years after. Mol. Cell 28, 739-745. https://doi.org/10.1016/j.molcel.2007.11.015
  18. Hicks, J. K., Chute, C. L., Paulsen, M. T., Ragland, R. L., Howlett, N. G., Gueranger, Q., Glover, T. W. and Canman, C. E. (2010) Differential roles for DNA polymerases eta, zeta, and REV1 in lesion bypass of intrastrand versus interstrand DNA cross-links. Mol. Cell. Biol. 30, 1217-1230. https://doi.org/10.1128/MCB.00993-09
  19. Jazayeri, A., Falck, J., Lukas, C., Bartek, J., Smith, G. C., Lukas, J. and Jackson, S. P. (2006) ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat. Cell Biol. 8, 37-45. https://doi.org/10.1038/ncb1337
  20. Kashyap, M. P., Singh, A. K., Yadav, D. K., Siddiqui, M. A., Srivastava, R. K., Chaturvedi, V. and Rai, N. (2015) 4-Hydroxy-trans-2-nonenal (4-HNE) induces neuronal SH-SY5Y cell death via hampering ATP binding at kinase domain of Akt1. Arch. Toxicol. 89, 243-258. https://doi.org/10.1007/s00204-014-1260-4
  21. Lara-Gonzalez, P., Scott, M. I., Diez, M., Sen, O. and Taylor, S. S. (2011) BubR1 blocks substrate recruitment to the APC/C in a KENbox-dependent manner. J. Cell Sci. 124, 4332-4345. https://doi.org/10.1242/jcs.094763
  22. Lehmann, A. R. (2011) Ubiquitin-family modifications in the replication of DNA damage. FEBS Lett. 585, 2772-2779. https://doi.org/10.1016/j.febslet.2011.06.005
  23. Leung, W., Baxley, R. M., Moldovan, G.-L. and Bielinsky, A.-K. (2019) Mechanisms of DNA damage tolerance: post-translational regulation of PCNA. Genes 10, 10.
  24. Liu, J. S., Kuo, S. R. and Melendy, T. (2003) Comparison of checkpoint responses triggered by DNA polymerase inhibition versus DNA damaging agents. Mutat. Res. 532, 215-226. https://doi.org/10.1016/j.mrfmmm.2003.08.018
  25. Murakumo, Y., Roth, T., Ishii, H., Rasio, D., Numata, S., Croce, C. M. and Fishel, R. (2000) A human REV7 homolog that interacts with the polymerase zeta catalytic subunit hREV3 and the spindle assembly checkpoint protein hMAD2. J. Biol. Chem. 275, 4391-4397. https://doi.org/10.1074/jbc.275.6.4391
  26. Musacchio, A. and Salmon, E. D. (2007) The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8, 379-393. https://doi.org/10.1038/nrm2163
  27. Nelson, J. R., Lawrence, C. W. and Hinkle, D. C. (1996) Deoxycytidyl transferase activity of yeast REV1 protein. Nature 382, 729-731. https://doi.org/10.1038/382729a0
  28. Nezi, L., Rancati, G., De Antoni, A., Pasqualato, S., Piatti, S. and Musacchio, A. (2006) Accumulation of Mad2-Cdc20 complex during spindle checkpoint activation requires binding of open and closed conformers of Mad2 in Saccharomyces cerevisiae. J. Cell Biol. 174, 39-51. https://doi.org/10.1083/jcb.200602109
  29. Okada, T., Sonoda, E., Yoshimura, M., Kawano, Y., Saya, H., Kohzaki, M. and Takeda, S. (2005) Multiple roles of vertebrate REV genes in DNA repair and recombination. Mol. Cell. Biol. 25, 6103-6111. https://doi.org/10.1128/MCB.25.14.6103-6111.2005
  30. Prakash, S., Johnson, R. E. and Prakash, L. (2005) Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu. Rev. Biochem. 74, 317-353. https://doi.org/10.1146/annurev.biochem.74.082803.133250
  31. Primorac, I. and Musacchio, A. (2013) Panta rhei: the APC/C at steady state. J. Cell Biol. 201, 177-189. https://doi.org/10.1083/jcb.201301130
  32. Roth, G. A., Krenn, C., Brunner, M., Moser, B., Ploder, M., Spittler, A., Pelinka, L., Sautner, T., Wolner, E. and Boltz-Nitulescu, G. (2004) Elevated serum levels of epithelial cell apoptosis-specific cytokeratin 18 neoepitope m30 in critically ill patients. Shock 22, 218-220. https://doi.org/10.1097/01.shk.0000136098.49672.0e
  33. Sacristan, C. and Kops, G. J. P. L. (2015) Joined at the hip: kinetochores, microtubules, and spindle assembly checkpoint signaling. Trends Cell Biol. 25, 21-28. https://doi.org/10.1016/j.tcb.2014.08.006
  34. Schutte, B., Henfling, M., Kolgen, W., Bouman, M., Meex, S., Leers, M. P., Nap, M., Bjorklund, V., Bjorklund, P., Bjorklund, B., Lane, E. B., Omary, M. B., Jornvall, H. and Ramaekers, F. C. (2004) Keratin 8/18 breakdown and reorganization during apoptosis. Exp. Cell Res. 297, 11-26. https://doi.org/10.1016/j.yexcr.2004.02.019
  35. Sharma, S., Helchowski, C. M. and Canman, C. E. (2013) The roles of DNA polymerase zeta and the Y family DNA polymerases in promoting or preventing genome instability. Mutat. Res. 743-744, 97-110. https://doi.org/10.1016/j.mrfmmm.2012.11.002
  36. Sironi, L., Mapelli, M., Knapp, S., De Antoni, A., Jeang, K. T. and Musacchio, A. (2002) Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a 'safety belt' binding mechanism for the spindle checkpoint. EMBO J. 21, 2496-2506. https://doi.org/10.1093/emboj/21.10.2496
  37. Xu, G., Chapman, J. R., Brandsma, I., Yuan, J., Mistrik, M., Bouwman, P., Bartkova, J., Gogola, E., Warmerdam, D., Barazas, M., Jaspers, J. E., Watanabe, K., Pieterse, M., Kersbergen, A., Sol, W., Celie, P. H. N., Schouten, P. C., van den Broek, B., Salman, A., Nieuwland, M., de Rink, I., de Ronde, J., Jalink, K., Boulton, S. J., Chen, J., van Gent, D. C., Bartek, J., Jonkers, J., Borst, P. and Rottenberg, S. (2015) REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature 521, 541-544. https://doi.org/10.1038/nature14328