• Title/Summary/Keyword: DNA-cleavage

Search Result 388, Processing Time 0.022 seconds

The Signaling of UV-induced Apoptosis in Melanocytes

  • Kim, Dong-Seok;Kim, Sook--Young;Park, Kyoung-Chan
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.217-220
    • /
    • 2002
  • Ultraviolet B (UVB) radiation may activate or deteriorate cultured human epidermal melanocytes, depending on the doses and culture conditions. In this study, we examined whether apoptosis of melanocytes can be induced by physiologic doses of UVB irradiation. PI staining for DNA condensation and flow cytometric analyses demonstrated the apoptotic cell death of melanocytes after UVB irradiation. The level of p53 and Bax revealed a dose-dependent increase with increasing dose of UVB, but the level of Bcl-2 remained unchanged. Confocal microscopic examination showed that Bax moved trom a diffuse to a punctate distribution after UVB irradiation. However, there were no changes in the pattern of Bcl-2. We next examined the downstream targets of apoptosis. Our results showed that a precursor form of caspase-3 disappeared with increasing doses of UVB. We also observed cleavage of poly(ADP-ribose) polymerase (PARP) after UVB irradiation. In addition, UVB irradiation resulted in a remarkable activation of c-Jun N-terminal kinase (JNK). These results indicate that UVB may induce apoptosis via JNK activation in human melanocytes.

  • PDF

Apicidin-Mediated Apoptosis Signaling in Human Promyelocytic Leukemia U937 Cells (Apicidin, Histone-Deacetylase Inhibitor에 의한 Promyelocytic U937 세포고사)

  • 정은현;박찬희;임창인;이황희;송훈섭;염성섭;정은배;이병곤;김영훈
    • Toxicological Research
    • /
    • v.19 no.3
    • /
    • pp.197-203
    • /
    • 2003
  • Apicidin, a histone-deacetylase inhibitor, has been successfully used to inhibit the growth of cancer cells. In this study, the apoptotic potential and mechanistic insights of apicidin were investigated in human myeloid leukemia U937 cells. Treatment of U937 cells with apicidin resulted in a decrease of cell viability with apoptotic characteristics, including chromatin condensation and ladder-pattern fragmentation of genomic DNA. Apicidin converted the procaspase-3 protease to catalytically active effector protease, resulting in subsequent cleavage of poly (ADP-ribose) polymerase (PARP) and inhibitor of caspase-activated deoxyribonuclease (ICAD). In addition, apicidin induced the activation of caspase-9 protease and the cytosolic release of mitochondrial cytochrome c with mitochon-drial membrane potential transition. Moreover, apicidin transiently increased the expression of Fas and Fas ligand proteins. Taken together, the results suggest that apicidin induces apoptosis of U937 cells through activation of intrinsic caspase cascades and Fas/FasL system with mitochondrial dysfunction.

Cohesin gene mutations in tumorigenesis: from discovery to clinical significance

  • Solomon, David A.;Kim, Jung-Sik;Waldman, Todd
    • BMB Reports
    • /
    • v.47 no.6
    • /
    • pp.299-310
    • /
    • 2014
  • Cohesin is a multi-protein complex composed of four core subunits (SMC1A, SMC3, RAD21, and either STAG1 or STAG2) that is responsible for the cohesion of sister chromatids following DNA replication until its cleavage during mitosis thereby enabling faithful segregation of sister chromatids into two daughter cells. Recent cancer genomics analyses have discovered a high frequency of somatic mutations in the genes encoding the core cohesin subunits as well as cohesin regulatory factors (e.g. NIPBL, PDS5B, ESPL1) in a select subset of human tumors including glioblastoma, Ewing sarcoma, urothelial carcinoma, acute myeloid leukemia, and acute megakaryoblastic leukemia. Herein we review these studies including discussion of the functional significance of cohesin inactivation in tumorigenesis and potential therapeutic mechanisms to selectively target cancers harboring cohesin mutations.

Regulation of Histone Acetylation during First Mitosis in Bovine Clone Embryos

  • Gabbine Wee;Koo, Deog-Bon;Kang, Man-Jong;Moon, Seung-Ju;Lee, Kyung-Kwang;Han, Yong-Mahn
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.189-189
    • /
    • 2004
  • Histone acetylation as epigenetic marker plays a critical role in gene expression through the interaction of nucleosomes with DNA, modulating the efficiency which RNA-polymerase can interact with promotors to initiate transcription. After fertilization, highly acetylated chromatin takes place and maintain during 1cell stages. The hyperacetylation may lead minor genome activation for survival and cleavage, and then may affect embryonic genome activation and development to balstocyst. (omitted)

  • PDF

Potentiation of Ceramide-Induced Apoptosis by $p27^{kip1}$ Overexpression

  • Kim Hae Jong;Ghil Kyung Chul;Kim Moo Sung;Yeo Seong Hyun;Chun Young Jin;Kim Mie Young
    • Archives of Pharmacal Research
    • /
    • v.28 no.1
    • /
    • pp.87-92
    • /
    • 2005
  • The cyclin-dependent kinase inhibitor$p27^{kip1}$(p27) has been implicated in the regulation of cell cycle and apoptosis. Recently, we have demonstrated that ceramide induces apoptotic cell death associated with increase in the level of p27 in HL-60 cells. In the present study, we showed that overexpression of p27 increases ceramide-induced apoptotic cell death in HL-60 cells. Furthermore, overexpression of p27 accelerated DNA fragmentation, PARP cleavage and cytochrome c release induced by ceramide. In addition, ceramide induced Sax expression independent of p27. These findings indicate that enhanced effect on apoptosis by p27 is associated with mitochondrial signaling which involves cytochrome c release.

Structural and dynamic views of the CRISPR-Cas system at the single-molecule level

  • Lee, Seung Hwan;Bae, Sangsu
    • BMB Reports
    • /
    • v.49 no.4
    • /
    • pp.201-207
    • /
    • 2016
  • The CRISPR-Cas system has emerged as a fascinating and important genome editing tool. It is now widely used in biology, biotechnology, and biomedical research in both academic and industrial settings. To improve the specificity and efficiency of Cas nucleases and to extend the applications of these systems for other areas of research, an understanding of their precise working mechanisms is crucial. In this review, we summarize current studies on the molecular structures and dynamic functions of type I and type II Cas nucleases, with a focus on target DNA searching and cleavage processes as revealed by single-molecule observations.

Induction of Apoptotic Cell Death by a Ceramide Analog in PC-3 Prostate Cancer Cells

  • Oh, Ji-Eun;So, Kwang-Sup;Lim, Se-Jin;Kim, Mie-Young
    • Archives of Pharmacal Research
    • /
    • v.29 no.12
    • /
    • pp.1140-1146
    • /
    • 2006
  • Ceramide analogs are potential chemotherapeutic agents. We report that a ceramide analog induces apoptosis in human prostate cancer cells. The ceramide analog induced cell death through an apoptotic mechanism, which was demonstrated by DNA fragmentation, the cleavage of poly ADP ribose polymerase (PARP), and a loss of membrane asymmetry. Treating the cells with ceramide analog resulted in the release of various proapoptotic mitochondrial proteins including cytochrome c and Smac/DIBLO into the cytosol, and a decrease in the mitochondrial membrane potential. In addition, the ceramide analog decreased the phospho-Akt and phospho-Bad levels. The expression of the antiapoptotic Bcl-2 decreased slightly with increasing Bax to Bcl-2 ratio. These results suggest that the ceramide analog induces apoptosis by regulating multiple signaling pathways that involve the mitochondrial pathway.

Targeted genome engineering via zinc finger nucleases

  • Kim, Seok-Joong;Kim, Jin-Soo
    • Plant Biotechnology Reports
    • /
    • v.5 no.1
    • /
    • pp.9-17
    • /
    • 2011
  • With the development of next-generation sequencing technology, ever-expanding databases of genetic information from various organisms are available to researchers. However, our ability to study the biological meaning of genetic information and to apply our genetic knowledge to produce genetically modified crops and animals is limited, largely due to the lack of molecular tools to manipulate genomes. Recently, targeted cleavage of the genome using engineered DNA scissors called zinc finger nucleases (ZFNs) has successfully supported the precise manipulation of genetic information in various cells, animals, and plants. In this review, we will discuss the development and applications of ZFN technology for genome engineering and highlight recent reports on its use in plants.

Apoptosis Inducing Effects of 6-Methoxydihydrosanguinarine in HT29 Colon Carcinoma Cells

  • Lee, Yong-Jin;Yin, Hu-Quan;Kim, Young-Ho;Li, Guang-Yong;Lee , Byung-Hoon
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1253-1257
    • /
    • 2004
  • 6-Methoxydihydrosanguinarine (6ME), a benzophenanthridine alkaloid derived from the methanol extracts of Hylomecon hylomeconoides, showed a dose-dependent effect at 1-10 ${\mu}M$ on causing apoptotic cell death in HT29 colon carcinoma cells $(IC_{50} = 5.0{\pm}0.2 {\mu}M)$. Treatment of HT-29 cells with 6ME resulted in the formation of internucleosomal DNA fragmentation. Treatment of the cells with 6ME caused activation of caspase-3, -8 and 9 protease and subsequent proteolytic cleavage of poly(ADP-ribose)polymerase. 6ME increased the expression of p53 and Bax and decreased the expression of Bid. These results indicate that p53 and proapoptotic Bcl-2 family proteins might participate in the antiproliferative activity of 6ME in HT29 cells.

The Preventive Effects of Bcl-2 and $Bcl-_{XL}$ on Lovastatin-induced Apoptosis of C6 Glial Cells

  • Choi, Jae-Won;Lee, Jong-Min;Oh, Young-Jun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.5
    • /
    • pp.235-239
    • /
    • 2002
  • It has been reported that lovastatin induced cell death and suppressed proliferation in various cell lines. In this study, we examined whether the cytotoxic effects of lovastatin could be prevented by Bcl-2 or $Bcl-_{XL}$ in C6 glial cells. Overexpression of human Bcl-2 or $Bcl-_{XL}$ prevented lovastatin $(25{\mu}M)-induced$ changes such as DNA fragmentation, chromatin condensation, disruption of cell membrane, and cleavage of poly (ADP-ribose) polymerase. Lovastatin-induced inhibition of cell proliferation was unaffected by Bcl-2 or $Bcl-_{XL}$ overexpression. These results suggest that Bcl-2 and $Bcl-_{XL}$ can prevent lovastatin-induced apoptosis in C6 glial cells, though the inhibition of proliferation remains unaffected by these proteins.