Browse > Article
http://dx.doi.org/10.5483/BMBRep.2016.49.4.042

Structural and dynamic views of the CRISPR-Cas system at the single-molecule level  

Lee, Seung Hwan (Center for Genome Engineering, Institute for Basic Science)
Bae, Sangsu (Department of ChemistryInstitute for Materials Design, Hanyang University)
Publication Information
BMB Reports / v.49, no.4, 2016 , pp. 201-207 More about this Journal
Abstract
The CRISPR-Cas system has emerged as a fascinating and important genome editing tool. It is now widely used in biology, biotechnology, and biomedical research in both academic and industrial settings. To improve the specificity and efficiency of Cas nucleases and to extend the applications of these systems for other areas of research, an understanding of their precise working mechanisms is crucial. In this review, we summarize current studies on the molecular structures and dynamic functions of type I and type II Cas nucleases, with a focus on target DNA searching and cleavage processes as revealed by single-molecule observations.
Keywords
CRISPR-Cas system; Crystal structure; Single molecule; Type I CRISPR; Type II CRISPR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823   DOI
2 Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339, 823-826   DOI
3 Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. eLife 2, e00471   DOI
4 Hwang WY1, Fu Y, Reyon D et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31, 227-229   DOI
5 Cho SW, Kim S, Kim JM, & Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31, 230-232   DOI
6 Barrangou R (2014) RNA events. Cas9 targeting and the CRISPR revolution. Science 344, 707-708   DOI
7 Doudna JA & Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096   DOI
8 Shalem O, Sanjana NE, & Zhang F (2015) High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet 16, 299-311   DOI
9 Sander JD & Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32, 347-355   DOI
10 Kim H & Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15, 321-334   DOI
11 Bhaya D, Davison M, & Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45, 273-297   DOI
12 Travis J (2015) Making the cut. Science 350, 1456-1457   DOI
13 Marraffini LA & Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11, 181-190   DOI
14 Wiedenheft B, Sternberg SH, & Doudna JA (2012) RNAguided genetic silencing systems in bacteria and archaea. Nature 482, 331-338   DOI
15 van der Oost J, Westra ER, Jackson RN, & Wiedenheft B (2014) Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol 12, 479-492   DOI
16 Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821   DOI
17 Nuñez JK, Kranzusch PJ, Noeske J, Wright AV, Davies CW, Doudna JA (2014) Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat Struct Mol Biol 21, 528-534   DOI
18 Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, & Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733-740   DOI
19 Deveau H, Barrangou R, Garneau JE et al (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190, 1390-1400   DOI
20 Brouns SJ, Jore MM, Lundgren M et al (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960-964   DOI
21 Jackson RN, Golden SM, van Erp PB et al (2014) Structural biology. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli. Science 345, 1473-1479   DOI
22 Carte J, Wang RY, Li H, Terns RM, & Terns MP (2008) Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Gene Dev 22, 3489-3496   DOI
23 Mulepati S, Heroux A, & Bailey S (2014) Structural biology. Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target. Science 345, 1479-1484   DOI
24 Tsui TK & Li H (2015) Structure Principles of CRISPR-Cas Surveillance and Effector Complexes. Annu Rev Biophys 44, 229-255   DOI
25 Westra ER, van Erp PB, Künne T et al (2012) CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol Cell 46, 595-605   DOI
26 Jore MM, Lundgren M, van Duijn E et al (2011) Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol 18, 529-U141   DOI
27 Zhao H, Sheng G, Wang J et al (2014) Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli. Nature 515, 147-150   DOI
28 Wiedenheft B, Lander GC, Zhou K et al (2011) Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature 477, 486-489   DOI
29 van Erp PB, Jackson RN, Carter J, Golden SM, Bailey S, Wiedenheft B (2015) Mechanism of CRISPR-RNA guided recognition of DNA targets in Escherichia coli. Nucleic Acids Res 43, 8381-8391   DOI
30 Thomas M, White RL, & Davis RW (1976) Hybridization of RNA to double-stranded DNA: formation of R-loops. Proc Natl Acad Sci U S A 73, 2294-2298   DOI
31 Sternberg SH, LaFrance B, Kaplan M, & Doudna JA (2015) Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 527, 110-113   DOI
32 Wilson-Sali T & Hsieh TS (2002) Preferential cleavage of plasmid-based R-loops and D-loops by Drosophila topoisomerase IIIbeta. Proc Natl Acad Sci U S A 99, 7974-7979   DOI
33 Sternberg SH, Redding S, Jinek M, Greene EC, & Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62-67   DOI
34 Nishimasu H, Ran FA, Hsu PD et al (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935-949   DOI
35 Biertumpfel C, Yang W, & Suck D (2007) Crystal structure of T4 endonuclease VII resolving a Holliday junction. Nature 449, 616-620   DOI
36 Anders C, Niewoehner O, Duerst A, & Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569-573   DOI
37 Szczelkun MD, Tikhomirova MS, Sinkunas T et al (2014) Direct observation of R-loop formation by single RNAguided Cas9 and Cascade effector complexes. Proc Natl Acad Sci U S A 111, 9798-9803   DOI
38 Nishimasu H, Cong L, Yan WX et al (2015) Crystal Structure of Staphylococcus aureus Cas9. Cell 162, 1113-1126   DOI
39 Joo C, Balci H, Ishitsuka Y, Buranachai C, & Ha T (2008) Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77, 51-76   DOI
40 Rutkauskas M, Sinkunas T, Songailiene I, Tikhomirova MS, Siksnys V, Seidel R (2015) Directional R-Loop Formation by the CRISPR-Cas Surveillance Complex Cascade Provides Efficient Off-Target Site Rejection. Cell Rep [Epub ahead of print]
41 Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E (2012) Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat Commun 3, 945   DOI
42 Blosser TR, Loeff L, Westra ER et al (2015) Two distinct DNA binding modes guide dual roles of a CRISPR-Cas protein complex. Mol Cell 58, 60-70   DOI
43 Fineran PC, Gerritzen MJ, Suárez-Diez M et al (2014) Degenerate target sites mediate rapid primed CRISPR adaptation. Proc Natl Acad Sci U S A 111, E1629-1638   DOI