• Title/Summary/Keyword: DNA similarity

Search Result 800, Processing Time 0.025 seconds

In vitro Evaluation of Different Feeds for Their Potential to Generate Methane and Change Methanogen Diversity

  • Kim, Seon-Ho;Mamuad, Lovelia L.;Jeong, Chang-Dae;Choi, Yeon-Jae;Lee, Sung Sill;Ko, Jong-Youl;Lee, Sang-Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.12
    • /
    • pp.1698-1707
    • /
    • 2013
  • Optimization of the dietary formulation is the most effective way to reduce methane. Nineteen feed ingredients (brans, vegetable proteins, and grains) were evaluated for their potential to generate methane and change methanogen diversity using an in vitro ruminal fermentation technique. Feed formulations categorized into high, medium and low production based on methane production of each ingredient were then subjected to in vitro fermentation to determine the real methane production and their effects on digestibility. Methanogen diversity among low, medium and high-methane producing groups was analyzed by PCR-DGGE. The highest methane production was observed in Korean wheat bran, soybean and perilla meals, and wheat and maize of brans, vegetable protein and cereal groups, respectively. On the other hand, corn bran, cotton seed meal and barley led to the lowest production in the same groups. Nine bacteria and 18 methanogen 16s rDNA PCR-DGGE dominant bands were identified with 83% to 99% and 92% to 100% similarity, respectively. Overall, the results of this study showed that methane emissions from ruminants can be mitigated through proper selection of feed ingredients to be used in the formulation of diets.

Isolation and Characterization of a New Methanobacterium formicicum KOR-1 from an Anaerobic Digester Using Pig Slurry

  • Battumur, Urantulkhuur;Yoon, Young-Man;Kim, Chang-Hyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.4
    • /
    • pp.586-593
    • /
    • 2016
  • A new methanogen was isolated from an anaerobic digester using pig slurry in South Korea. Only one strain, designated KOR-1, was characterized in detail. Cells of KOR-1 were straight or crooked rods, non-motile, 5 to $15{\mu}m$ long and $0.7{\mu}m$ wide. They stained Gram-positive and produced methane from $H_2+CO_2$ and formate. Strain KOR-1 grew optimally at $38^{\circ}C$. The optimum pH for growth was 7.0. The strain grew at 0.5% to 3.0% NaCl, with optimum growth at 2.5% NaCl. The G+C content of genomic DNA of strain KOR-1 was 41 mol%. The strain tolerated ampicillin, penicillin G, kanamycin and streptomycin but tetracycline inhibited cell growth. A large fragment of the 16S rRNA gene (~1,350 bp) was obtained from the isolate and sequenced. Comparison of 16S rRNA genes revealed that strain KOR-1 is related to Methanobacterium formicicum (98%, sequence similarity), Methanobacterium bryantii (95%) and Methanobacterium ivanovii (93%). Phylogenetic analysis of the deduced mcrA gene sequences confirmed the closest relative as based on mcrA gene sequence analysis was Methanobacterium formicicum strain (97% nucleic acid sequence identity). On the basis of physiological and phylogenetic characteristics, strain KOR-1 is proposed as a new strain within the genus Methanobacterium, Methanobacterium formicicum KOR-1.

Cloning, Expression, and Nucleotide Sequencing of the Gene Encoding Glucose Permease of Phosphotransferase System from Brevibacterium ammoniagenes

  • Yoon, Ki-Hong;Yim, Hyouk;Jung, Kyung-Hwa
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.3
    • /
    • pp.214-221
    • /
    • 1998
  • A Brevibacterium ammoniagenes gene coding for glucose/mannose-specific enzyme II ($EII^{Glc}$) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was cloned by complementing an Escherichia coli mutation affecting a ptsG gene, and the complete DNA nucleotide sequence was determined. The cloned gene was identified to be a ptsG, which enables the E. coli transportment to use glucose more efficiently than mannose as the sole carbon source in an M9 minimal medium. The ptsG gene of B. ammoniagenes consists of an open reading frame of 1,983 nucleotides putatively encoding a polypeptide of 661 amino acid residues and a TAA stop codon. The deduced amino acid sequence of the B. ammoniagenes $EII^{Glc}$ shows, at $46\%$, the highest degree of sequence similarity with the Corynebacterium glutamicum EII specific for both glucose and mannose. In addition, the $EII^{Glc}$ shares approximately $30\%$ sequence similarities with sucrose-specific and ${\beta}$-glucoside-specific EIIs of the several bacteria belonging to the glucose-PTS class. The 161-amino-acid C-terminal sequence of $EII^{Glc}$ is also similar to that of E. coli enzyme $IIA^{Glc}$, specific for glucose ($EIIA^{Glc}$). The B. ammoniagenes $EII^{Glc}$ consists of three domains; a hydrophobic region (EIIC) and two hydrophilic regions (EIIA, EIIB). The arrangement of structural domains, IIBCA, of the $EII^{Glc}$ is identical to those of EIIs specific for sucrose or ${\beta}$-glucoside. While the domain IIA was removed from the B. ammoniagenes $EII^{Glc}$ the remaining domains IIBC were found to restore the glucose and mannose-utilizing capacity of E. coli mutant lacking $EII^{Glc}$ activity with $EIIA^{Glc}$ of the E. coli mutant. $EII^{Glc}$ contains a histidine residue and a cysteine residue which are putative phosphorylation sites for the protein.

  • PDF

Molecular cloning, expression and characterization of a novel feruloyl esterase enzyme from the symbionts of termite (Coptotermes formosanus) gut

  • Chandrasekharaiah, Matam;Thulasi, Appoothy;Bagath, M.;Kumar, Duvvuri Prasanna;Santosh, Sunil Singh;Palanivel, Chenniappan;Jose, Vazhakkala Lyju;Sampath, K.T.
    • BMB Reports
    • /
    • v.44 no.1
    • /
    • pp.52-57
    • /
    • 2011
  • Termites play an important role in the degradation of dead plant materials and have acquired endogenous and symbiotic cellulose digestion capabilities. The feruloyl esterase enzyme (FAE) gene amplified from the metagenomic DNA of Coptotermes formosanus gut was cloned in the TA cloning vector and subcloned into a pET32a expression vector. The Ft3-7 gene has 84% sequence identity with Clostridium saccharolyticum and shows amino acid sequence identity with predicted xylanase/chitin deacetylase and endo-1,4-beta-xylanase. The sequence analysis reveals that probably Ft3-7 could be a new gene and that its molecular mass was 18.5 kDa. The activity of the recombinant enzyme (Ft3-7) produced in Escherichia coli (E.coli) was 21.4 U with substrate ethyl ferulate and its specific activity was 24.6 U/mg protein. The optimum pH and temperature for enzyme activity were 7.0 and $37^{\circ}C$, respectively. The substrate utilization preferences and sequence similarity of the Ft3-7 place it in the type-D sub-class of FAE.

Molecular Divergences of 16S rRNA and rpoB Gene in Marine Isolates of the Order Oscillatoriales (Cyanobacteria) (남조세균 흔들말목(Cyanobacteria, Oscillatoriales) 해양 균주의 16S rRNA와 rpoB 유전자 변이)

  • Cheon, Ju-Yong;Lee, Min-Ah;Ki, Jang-Seu
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.319-324
    • /
    • 2012
  • In this study, we investigated molecular divergences and phylogenetic characteristics of the 16S ribosomal RNA (rRNA) and RNA polymerase beta subunit (rpoB) gene sequences from the order Oscillatoriales (Cyanobacteria). The rpoB of Oscillatoriales showed higher genetic divergence when compared with those of 16S rRNA (p-distance: rpoB=0.270, 16S=0.109), and these differences were statistically significant (Student t-test, p<0.001). Phylogenetic trees of 16S rRNA and rpoB were generally compatible; however, rpoB tree clearly separated the compared Oscillatoriales taxa, with higher phylogenetic resolution. In addition, parsimony analyses showed that rpoB gene evolved 2.40-fold faster than 16S rRNA. These results suggest that the rpoB is a useful gene for the molecular phylogenetics and species discrimination in the order Oscillatoriales.

Probiotic Property of Lactobacillus pentosus Miny-148 Isolated from Human Feces (인체분변으로부터 분리한 유산균 Lactobacillus pentosus Miny-148의 생균제 특성 연구)

  • Jung, Min-Young;Park, Yong-Ha;Kim, Hyun-Soo;Poo, Ha-Ryoung;Chang, Young-Hyo
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.177-184
    • /
    • 2009
  • Three hundred lactic acid bacteria isolated from human feces were studied their probiotic characters to develop potential probiotics. The properties were tested on the basis of guideline for probiotic selection protocol such as tolerance for acid or bile salt, thermal stability, antimicrobial, anticancer cell, and antiviral activity. Strain Miny-148 was selected as a potential probiotic bacterium which showed resistance to low pH, bile salts and thermal stability. On the basis of fatty acid profiles and 16S rDNA sequences analysis, the strain was identified as Lactobacillus pentosus (similarity 99.9%). The strain, L. pentosus Miny-148, showed broad antimicrobial spectrum against E. coli O157:H7, Shigella flexneri, Bacillus anthracis, Staphylococcus aureus, E. coli, Vibrio cholerae, V. vulnificus, Salmonella typhimurium, and Methicillin-resistant S. aureus (MRSA). Cell-free culture supernatant of the strain also inhibited against the growth of HT-29 colon cancer cell and transmissible gastroenterits virus.

Characterization of α-agarase from Alteromonas sp. SH-1 (Alteromonas sp. SH-1균 유래의 α-agarase의 특성조사)

  • Lee, Sol-Ji;Shin, Da-Young;Kim, Jae-Deog;Lee, Dong-Geun;Lee, Sang-Hyeon
    • KSBB Journal
    • /
    • v.31 no.2
    • /
    • pp.113-119
    • /
    • 2016
  • A novel agar-degrading marine bacterium, SH-1 strain, was isolated from seashore of Namhae at Gyeongnam province, Korea. The SH-1 strain exhibited 98% similarity with Alteromonas species based on 16S rDNA sequencing and named as Alteromonas sp. SH-1. Alteromonas sp. SH-1 showed agarase activity of 348.3 U/L (1.67 U/mg protein). The molecular masses of the enzymes were predicted as about 85 kDa and 110 kDa by SDS-PAGE and zymogram. The enzymatic activity was optimal at $30^{\circ}C$ and the relative agarase activity was decreased as temperature increase from $30^{\circ}C$ and thus about 90% and 70% activities were shown at $40^{\circ}C$ and $50^{\circ}C$, respectively. The optimum pH was 6.0 for agarase activity in 20 mM Tris-HCl buffer and activities were less than 70% and 85% activity at pH 5.0 and pH 7.0, respectively, compared with that at pH 6. Agarase activity has remained over 90% at $20^{\circ}C$ after 1.5 hour exposure at this temperature. However, its activity was less than 60% at $30^{\circ}C$ after 0.5 h exposure at this temperature. The enzymes produced agarooligosaccharides such as agaropentaose and agarotriose from agarose, indicating that the agarases are ${\alpha}$-agarases. Thus, Alteromonas sp. SH-1 and its agarases would be useful for the industrial production of agarooligosaccharides which are known as having anticancer and antioxidation activities.

Isolation and Characterization of Strain of Bacillus thuringiensis subsp. kenyae Containing Two Novel cry1-Type Toxin Genes

  • Choi, Jae-Young;Li, Ming Shun;Shim, Hee-Jin;Roh, Jong-Yul;Woo, Soo-Song;Jin, Byung-Rae;Boo, Kyung-Saeng;Je, Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1498-1503
    • /
    • 2007
  • To identify novel crystal proteins, Bacillus thuringiensis 2385-1 was isolated from Korean soil samples and characterized. The H-serotype of 2385-1 was identical to that of subsp. kenyae (H4a4c), and its crystal toxin was bipyramidal-shaped. However, 2385-1 showed a much higher toxicity towards Plutella xylostella and Spodoptera exigua larvae than subsp. kenyae. In addition, the crystal protein profile and plasmid DNA pattern of 2385-1 differed from those of subsp. kenyae. To verify the crystal protein gene types of 2385-1, a PCR-RFLP analysis was performed, and the results revealed that 2385-1 contained two novel cry1-type crystal protein genes, cryl-5 and cry1-12, in addition to the crylJal gene. The deduced amino acid sequences of cryl-5 and cry1-12 showed a 97.9% and 75.7% sequence similarity with the CrylAb and CrylJa crystal proteins, respectively. Among the novel crystal proteins, Cry1-5 showed a high toxicity towards P. xylostella and S. exigua larvae. In conclusion, B. thuringiensis 2385-1 is a new isolate in terms of its gene types, and should be a promising source for an insecticide to control lepidopteran larvae.

Metagenomic Analysis of Novel Lignocellulose-Degrading Enzymes from Higher Termite Guts Inhabiting Microbes

  • Nimchua, Thidarat;Thongaram, Taksawan;Uengwetwanit, Tanaporn;Pongpattanakitshote, Somchai;Eurwilaichitr, Lily
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.462-469
    • /
    • 2012
  • A metagenomic fosmid library was constructed from genomic DNA isolated from the microbial community residing in hindguts of a wood-feeding higher termite (Microcerotermes sp.) collected in Thailand. The library was screened for clones expressing lignocellulolytic activities. Fourteen independent active clones (2 cellulases and 12 xylanases) were obtained by functional screening at pH 10.0. Analysis of shotgun-cloning and pyrosequencing data revealed six ORFs, which shared less than 59% identity and 73% similarity of their amino acid sequences with known cellulases and xylanases. Conserved domain analysis of these ORFs revealed a cellulase belonging to the glycoside hydrolase family 5, whereas the other five xylanases showed significant identity to diverse families including families 8, 10, and 11. Interestingly, one fosmid clone was isolated carrying three contiguous xylanase genes that may comprise a xylanosome operon. The enzymes with the highest activities at alkaline pH from the initial activity screening were characterized biochemically. These enzymes showed a broad range of enzyme activities from pH 5.0 to 10.0, with pH optimal of 8.0 retaining more than 70% of their respective activities at pH 9.0. The optimal temperatures of these enzymes ranged from $50^{\circ}C$ to $55^{\circ}C$. This study provides evidence for the diversity and function of lignocellulose-degrading enzymes in the termite gut microbial community, which could be of potential use for industrial processes such as pulp biobleaching and denim biostoning.

Inhella inkyongensis gen. nov., sp. nov., a New Freshwater Bacterium in the Order Burkholderiales

  • Song, Jae-Ho;Oh, Hyun-Myung;Lee, Jung-Sook;Woo, Seung-Buhm;Cho, Jang-Cheon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.5-10
    • /
    • 2009
  • A freshwater bacterium, designated $IMCC1713^T$, was isolated from a highly eutrophic artificial pond. Cells of the strain were Gram-negative, chemoheterotrophic, poly-$\beta$-hydroxybutyrate granule containing and obligately aerobic short rods that were motile with a single polar flagellum. The 16S rRNA gene sequence similarity analysis showed that the novel strain was most closely related to the species Roseateles depolymerans (96.3%), Mitsuaria chitosanitabida (96.2%), Ideonella dechloratans (96.2%), and Pelomonas saccharophila (96.1%) in the Sphaerotilus-Leptothrix group within the order Burkholderiales. Phylogenetic trees based on 16S rRNA gene sequences indicated that the isolate formed an independent monophyletic clade within the order Burkholderiales. The relatively low DNA G+C content (57.4mol%), together with several phenotypic characteristics, differentiated the novel strain from other members of the Sphaerotilus-Leptothrix group. From the taxonomic data, therefore, the strain should be classified as a novel genus and species, for which the name Inhella inkyongensis gen. nov., sp. nov. is proposed. The type strain of the proposed species is strain $IMCC1713^T$ (=KCTC $12791^T$=NBRC $103252^T$=CCUG $54308^T$).