Browse > Article

Isolation and Characterization of Strain of Bacillus thuringiensis subsp. kenyae Containing Two Novel cry1-Type Toxin Genes  

Choi, Jae-Young (Research Institute for Agriculture and Life Sciences, Seoul National University)
Li, Ming Shun (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
Shim, Hee-Jin (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
Roh, Jong-Yul (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
Woo, Soo-Song (Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University)
Jin, Byung-Rae (College of Natural Resources and Life Science, Dong-A University)
Boo, Kyung-Saeng (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
Je, Yeon-Ho (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.9, 2007 , pp. 1498-1503 More about this Journal
Abstract
To identify novel crystal proteins, Bacillus thuringiensis 2385-1 was isolated from Korean soil samples and characterized. The H-serotype of 2385-1 was identical to that of subsp. kenyae (H4a4c), and its crystal toxin was bipyramidal-shaped. However, 2385-1 showed a much higher toxicity towards Plutella xylostella and Spodoptera exigua larvae than subsp. kenyae. In addition, the crystal protein profile and plasmid DNA pattern of 2385-1 differed from those of subsp. kenyae. To verify the crystal protein gene types of 2385-1, a PCR-RFLP analysis was performed, and the results revealed that 2385-1 contained two novel cry1-type crystal protein genes, cryl-5 and cry1-12, in addition to the crylJal gene. The deduced amino acid sequences of cryl-5 and cry1-12 showed a 97.9% and 75.7% sequence similarity with the CrylAb and CrylJa crystal proteins, respectively. Among the novel crystal proteins, Cry1-5 showed a high toxicity towards P. xylostella and S. exigua larvae. In conclusion, B. thuringiensis 2385-1 is a new isolate in terms of its gene types, and should be a promising source for an insecticide to control lepidopteran larvae.
Keywords
Bacillus thuringiensis 2385-1; PCR-RFLP; cry1-type gene; insecticidal activity; novel crystal protein;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Chang, J. H., J. Y. Choi, B. R. Jin, J. Y. Roh, J. A. Olszewski, S. J. Seo, D. R. O'Reilly, and Y. H. Je. 2003. An improved baculovirus insecticide producing occlusion bodies that contain Bacillus thuringiensis insect toxin. J. Invertebr. Pathol. 84: 30-37   DOI   ScienceOn
2 Fitch, W. M. 1971. Toward defining the course of evolution: Minimal change for a specific tree topology. Syst. Zool. 20: 406-416   DOI   ScienceOn
3 Je, Y. H., J. H. Chang, J. Y. Roh, and B. R. Jin. 2001. Generation of baculovirus expression vector using defective Autographa californica nuclear polyhedrosis virus genome maintained in Escherichia coli for $Occ^+$ virus production. Int. J. Indust. Entomol. 2: 155-160
4 Kim, J. S., J. Y. Choi, J. H. Chang, H. J. Shim, J, Y. Roh, B. R. Jin, and Y. H. Je. 2005. Characterization of an improved recombinant baculovirus producing polyhedra that contain Bacillus thuringiensis Cry1Ac crystal protein. J. Microbiol. Biotechnol. 15: 710-715   과학기술학회마을
5 Masson, L., W. J. Moar, K. van Frankenhuyzen, M. Bosse, and R. Brousseau. 1992. Insecticidal properties of a crystal protein gene product isolated from Bacillus thuringiensis subsp. kenyae. Appl. Environ. Microbiol. 58: 642-646
6 Walters, F. S. and L. H. English. 1995. Toxicity of Bacillus thuringiensis $\delta$-endotoxins toward the potato aphid in an artificial diet bioassay. Entomol. Exp. Appl. 77: 211-216   DOI   ScienceOn
7 Roh, J. Y., J. Y. Choi, M. S. Li, B. R. Jin, and Y. H. Je. 2007. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17: 560-570   과학기술학회마을
8 Li, J., J. Carroll, and D. J. Ellar. 1991. Crystal structure of insecticidal $\delta$-endotoxin from Bacillus thuringiensis at 2.5 $\AA$ resolution. Nature 353: 815-821   DOI   ScienceOn
9 Swofford, D. L. 1998. PAUP* (Phylogenetic Analysis Using Parsimony and Other Methods*). Version 4. Sinauer Associates, Sunderland
10 Kim, J. S., J. Y. Choi, J. Y. Roh, H. Y. Lee, S. S. Jang, and Y. H. Je. 2007. Production of recombinant polyhedra containing Cry1Ac fusion protein in insect cell lines. J. Microbiol. Biotechnol. In press   과학기술학회마을
11 Kuo, W. S. and K. F. Chak. 1996. Identification of novel cry-type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA. Appl. Environ. Microbiol. 62: 1369-1377
12 Ferre, J., M. D. Real, J. van Rie, S. Jansens, and M. Peferoen. 1991. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. USA 88: 5119-5123
13 Ohba, M. and K. Aizawa. 1978. Serological identification of Bacillus thuringiensis and related bacteria isolated in Japan. J. Invertebr. Pathol. 32: 303-309   DOI
14 Thomas, W. E. and D. J. Ellar. 1983. Bacillus thuringiensis var israelensis crystal $\delta$-endotoxin: Effects on insect and mammalian cells in vitro and in vivo. J. Cell Sci. 60: 181-197
15 Herrero, S., J. Gonzalez-Cabrera, B. E. Tabashnik, and J. Ferre. 2001. Shared binding sites in Lepidoptera for Bacillus thuringiensis Cry1Ja and Cry1A toxins. Appl. Environ. Microbiol. 67: 5729-5734   DOI   ScienceOn
16 Ballester, V., F. Granero, R. A. de Maagd, D. Bosch, J. L. Mensua, and J. Ferr . 1999. Role of Bacillus thuringiensis toxin domains in toxicity and receptor binding in the diamondback moth. Appl. Environ. Microbiol. 65: 1900-1903
17 Laurent, P., H. Ripouteau, V. C. Dumanoir, E. Frachon, and M. M. Lecadet. 1996. A micromethod for serotyping Bacillus thuringiensis. Lett. Appl. Microbiol. 22: 259-261   DOI   ScienceOn
18 Tabashnik, B. E., K. W. Johnson, J. T. Engleman, and J. A. Baum. 2000. Cross-resistance to Bacillus thuringiensis toxin Cry1Ja in a strain of diamondback moth adapted to artificial diet. J. Invertebr. Pathol. 76: 81-83   DOI   ScienceOn
19 Martin, P. A. W. and R. S. Travers. 1989. Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 55: 2437-2442
20 Von Tersch, M. A., H. L. Robbins, C. S. Jany, and T. B. Johnson. 1991. Insecticidal toxins from Bacillus thuringiensis subsp. kenyae: Gene cloning and characterization and comparison with B. thuringiensis subsp. kurstaki Cry1A(c) toxins. Appl. Environ. Microbiol. 57: 349-358
21 Ballester, V., F. Granero, B. E. Tabashnik, T. Malvar, and J. Ferr . 1999. Integrative model for binding of Bacillus thuringiensis toxins in susceptible and resistant larvae of the diamondback moth (Plutella xylostella). Appl. Environ. Microbiol. 65: 1413-1419
22 Jung, S.-Y., J-H. Lee, Y.-G.. Chai, and S.-J. Kim. 2005. Monitoring of microorganisms added into oil-contaminated microenvironments by terminal-restriction fragment length polymorphism analysis. J. Microbiol. Biotechnol. 15: 1170-1177   과학기술학회마을
23 Je, Y. H., B. R. Jin, H. W. Park, J. Y. Roh, J. H. Chang, S. J. Seo, J. A. Olszewski, D. R. O'Reilly, and S. K. Kang. 2003. Baculovirus expression vectors that incorporate the foreign protein into viral occlusion bodies. Biotechniques 34: 81-87
24 Li, M. S., J. Y. Choi, J. Y. Roh, H. J. Shim, J. N. Kang, Y. Kim, Y. Wang, Z. N. Yu, B. R. Jin, and Y. H. Je. 2007. Identification of molecular characterization of novel cry1- type toxin genes from Bacillus thuringiensis K1 isolated in Korea. J. Microbiol. Biotechnol. 17: 15-20   과학기술학회마을
25 Chambers, J. A., A. Jelen, M. P. Gilbert, C. S. Jany, T. B. Johnson, and C. Gawron-Burke. 1991. Isolation and characterization of a novel insecticidal crystal protein gene from Bacillus thuringiensis subsp. aizawai. J. Bacteriol. 173: 3966-3976   DOI
26 Crickmore, N., D. R. Zeigler, J. Feitelson, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum, and D. H. Dean. 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 807-813
27 Escriche, B., J. Ferr , and F. J. Silva. 1997. Occurrence of a common binding site in Mamestra brassicae, Phthorimaea operculella, and Spodoptera exigua for the insecticidal crystal proteins CryIA from Bacillus thuringiensis. Insect Biochem. Mol. Biol. 27: 651-656   DOI   ScienceOn
28 Boucias, D. G. and J. C. Pendland. 1998. Principles of Insect Pathology. Kluwer Academic Publishers, Boston
29 Haider, M. Z. and D. J. Ellar. 1989. Functional mapping of an entomocidal $\delta$-endotoxin. Single amino acid changes produced by site-directed mutagenesis influence toxicity and specificity of the protein. J. Mol. Biol. 208: 183-194   DOI
30 Johnson, C., A. H. Bishop, and C. L. Turner. 1998. Isolation and activity of strain of Bacillus thuringiensis toxic to larvae of the housefly (Diptera: Muscidae) and tropical blowflies (Diptera: Calliphoridae). J. Invertebr. Pathol. 71: 138-144   DOI   ScienceOn
31 Juarez-Perez, V. M., M. D. Ferrandis, and R. Froutos. 1997. PCR-based approach for detection of novel Bacillus thuringiensis cry genes. Appl. Environ. Microbiol. 63: 2997-3002
32 Visser, B., E. Munsterman, A. Stoker, and W. G. Dirkse. 1990. A novel Bacillus thuringiensis gene encoding a Spodoptera exigua-specific crystal protein. J. Bacteriol. 172: 6783-6788   DOI
33 Russell, R. M., J. L. Robertson, and S. E. Sauvin. 1977. POLO: A new computer program for probit analysis. Bull. Entomol. Soc. Am. 23: 209-213
34 Horak, P., J. Weiser, and L. M. Scaron. 1996. The effect of Bacillus thuringiensis M-exotoxin on trematode cercariae. J. Invertebr. Pathol. 68: 41-49   DOI   ScienceOn
35 Sambrook, J., E. F. Fritsch, and T. M. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, New York
36 Visser, B., T. van der Salm, W. van der Brink, and G. Folkers. 1988. Genes from Bacillus thuringiensis entomocidus 60.5 coding for insect-specific toxins. Mol. Gen. Genet. 212: 219-224   DOI
37 Li, M. S., Y. H. Je, I. H. Lee, J. H. Chang, J. Y. Roh, H. S. Kim, H. W. Oh, and K. S. Boo. 2002. Isolation and characterization of a strain of Bacillus thuringiensis ssp. kurstaki containing a new $\delta$-endotoxin gene. Curr. Microbiol. 45: 299-302   DOI   ScienceOn