• Title/Summary/Keyword: DNA oxidation

Search Result 193, Processing Time 0.025 seconds

Lactobacillus plantarum (KACC 92189) as a Potential Probiotic Starter Culture for Quality Improvement of Fermented Sausages

  • Ba, Hoa Van;Seo, Hyun-Woo;Seong, Pil-Nam;Kang, Sun-Moon;Kim, Yoon-Seok;Cho, Soo-Hyun;Park, Beom-Young;Ham, Jun-Sang;Kim, Jin-Hyoung
    • Food Science of Animal Resources
    • /
    • v.38 no.1
    • /
    • pp.189-202
    • /
    • 2018
  • This study was conducted to evaluate the effects of fermenting temperature on the applicability of Lactobacillus plantarum for production of fermented sausages as starter cultures, and its applicable efficiency was also compared with those inoculated with commercial starter culture or non-inoculated control. The L. plantarum isolated from a naturally-fermented meat, identified by 16S rDNA sequencing and again identified by de novo Assembly Analysis method was used as a starter culture. Six treatments: 3 with L. plantarum at different fermenting temperatures (20, 25 and $30^{\circ}C$), and other 3 treatments (1 with commercial starter culture, 1 with its mixture with L. plantarum and 1 non-inoculated control) fermented under the same conditions ($25^{\circ}C$) were prepared. Results revealed that the fermenting temperature considerably affected the pH change in samples added with L. plantarum; the highest pH drop rate (1.57 unit) was obtained on the samples fermented at $30^{\circ}C$, followed by those at $25^{\circ}C$ (1.3 unit) and $20^{\circ}C$ (0.99 unit) after 4 days fermentation. Increasing the temperature up to $30^{\circ}C$ resulted in significantly lower spoilage bacteria count (5.15 log CFU/g) and lipid oxidation level in the products inoculated with L. plantarum. The sensory analysis also showed that the samples added with L. plantarum at $30^{\circ}C$ had significantly higher odor, taste and acceptability scores than those fermented at lower temperatures. Under the same processing condition, although the L. plantarum showed slightly lower acidification than the commercial starter culture, however, it significantly improved the eating quality of the product.

Expression, Purification and Characterization of Yeast Thioredoxin System. (Yeast Thioredoxin System의 발현, 정제 및 특성조사)

  • 정진숙;김명희;김강화
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.6
    • /
    • pp.483-489
    • /
    • 1998
  • We carried out the expression and characterization of yeast thioredoxin system including thioredexin 1 (Trx1), Trx2, thioredoxin reductase (TR), and a novel thioredoxin (Trx3), which was reported in the data base of Saccharomyces genome. The Trx1, 2 and TR were expressed as soluble proteins in E. coli and the sizes of purified proteins were equal to the reported their molecular weights. The expressed Trx3 was found in both soluble fraction and precipitate. The size of Trx3 purified from soluble fraction of E. coli crude extracts was estimated as 14 kDa on SDS-PAGE instead of 18 kDa for Trx3 in precipitate. N-terminal amino acid sequence of the small size of purified Trx3 from soluble fraction was analyzed as FQSSYTS which is correspond to the sequence from 20 to 26 for Trx3. Trx3 together with thioredoxin reductase and NADPH was able to reduce the disulfide bridge of insulin and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB). Trx3 stimulated the antioxidant effect of thioredoxin peroxidase 1 (TPx1) which inhibited inactivation of glutamine synthetase (GS) in dithiothreitol (DTT) containing metal catalyzed oxidation system. The stimulation effect of Trx3 was 10% of the effect of either Trx1 or Trx2. In addition, Trx3 could reduce the disulfide of TPx to thiol, so that the TPx had thioredoxin dependant peroxidase activity. In western blotting analysis, antibodies against purified Trx3 did not cross-react with crude extracts of yeast, purified Trx1, and Trx2 proteins. But, in PCR reaction using the cDNA library of yeast as a template, gene encoding of trx3 was amplified.

  • PDF

Effects of Shiryung-tang Extract on the Liver Injury induced by Ethanol in Rats (시령탕(柴苓湯)이 에탄올 투여로 유발된 흰쥐의 간손상에 미치는 방어효과)

  • Kim, Bum Hoi;Choi, Yung Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.5
    • /
    • pp.611-616
    • /
    • 2013
  • Alcoholic liver disease (ALD) is a major cause of morbidity and mortality around the world. Although much progress has been made in understanding the pathogenesis of ALD, there remains no effective therapy for it. Accumulated evidence indicates that oxidative stress is the main pathological factors in the development of ALD. Ethanol administration causes accumulation of reactive oxygen species (ROS), including superoxide, hydroxyl radical, and hydrogen peroxide. ROS, in turn, cause lipid peroxidation of cellular membranes, and protein and DNA oxidation, which results in hepatocyte injury. In addition to pro-oxidants formation, antioxidants depletion caused by ethanol administration also results in oxidative stress. The objective of this study is to investigate the effects of Shiryung-tang extract on the chronic alcoholic liver injury induced by EtOH. Male Sprague Dawley rats were used in this study. All rats were maintained under standard laboratory conditions ($23{\pm}1^{\circ}C$, 12h light/12h dark cycles). All animals (n=30) were randomly divided into following groups: (1) Normal group, treated with distilled water (n=10); (2) Control group, treated with ethanol (n=10); (3) Sample group, treated with ethanol + pharmacopuncture (n=10). For oral administration of ethanol in Control and Sample group, the ethanol was dissolved in distilled water in concentrations of 25%(v/v). Throughout the experiment of 8 week, the rats were allowed free access to water and standard chow. Sample group were administrated by Shiryung-tang extract daily for 8 weeks. Control group were given normal saline for same weeks. As a results, the oral administration of ethanol for 8 weeks leads to hepatotoxicity. The levels of hepatic marker such as HDL-cholesterol, triglyceride, aspartate aminotransferase and alanine aminotransferase were altered. The ethanol also increased lipid peroxidation and depletion of antioxidant enzyme activities as well as hepatic tissue injury. However, the treatment of Shiryung-tang extract prevented all the alterations induced by ethanol and returned their levels to near normal. These data suggest that Shiryung-tang extract could have a beneficial effect in inhibiting the oxidative damage induced by chronic ethanol administration. Therefore, Shiryung-tang extract can be a candidate to protect against EtOH-induced liver injury.

Functional Screening for Cell Death Suppressors and Development of Multiple Stress-Tolerant Plants

  • Moon, Hae-Jeong;Baek, Dong-Won;Lee, Ji-Young;Nam, Jae-Sung;Yun, Dae-Jin
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2003.04a
    • /
    • pp.65-71
    • /
    • 2003
  • Bax, a mammalian pro-apoptotic member of the Bcl-2 family, induces cell death when expressed in yeast. To investigate whether Bax expression can induce cell death in plant, we produced transgenic Arabidopsis plants that contained murine Bax cDNA under control of a glucocorticoid-inducible promoter. Transgenic plants treated with dexamethasone, a strong synthetic glucocorticoid, induced Bax accumulation and cell death, suggesting that some elements of cell death mechanism by Bax may be conserved among various organisms. Therefore, we developed novel yeast genetic system, and cloned several Plant Bax Inhibitors (PBIs). Here, we report the function of two PBIs in detail. PBI1 is ascorbate peroxidase (sAPX). Fluorescence method of dihydrorho-damine 123 oxidation revealed that expression of Bax in yeast cells generated reactive oxygen species (ROS), and which was greatly reduced by co-expression with sAPX. These results suggest that sAPX inhibits the generation of ROS by Bax, which in turn suppresses Baxinduced cell death in yeast. PBI2 encodes nucleoside diphosphate kinase (NDPK). ROS stress strongly induces the expression of the NDPK2 gene in Arabidopsis thaliana (AtNDPK2). Transgenic plants overexpressing AtNDPK2 have lower levels of ROS than wildtype plants. Mutants lacking AtNDPK2 had higher levels of ROS than wildtype. $H_2O_2$ treatment induced the phosphorylation of two endogenous proteins whose molecular weights suggested they are AtMPK3 and AtMPK6. In the absence of $H_2O_2$ treatment, phosphorylation of these proteins was slightly elevated in plants overexpressing AtNDPK2 but markedly decreased in the AtNDPK2 deletion mutant. Yeast two-hybrid and in vitro protein pull-down assays revealed that AtNDPK2 specifically interacts with AtMPK3 and AtMPK6. Furthermore, AtNDPK2 also enhances the MBP phosphorylation activity of AtMPK3 in vitro. Finally, constitutive overexpression of AtNDPK2 in Arabidopsis plants conferred an enhanced tolerance to multiple environmental stresses that elicit ROS accumulation in situ. Thus, AtNDPK2 appears to play a novel regulatory role in $H_2O_2$-mediated MAPK signaling in plants.

  • PDF

Antioxidant activity of wood vinegar by bioconversion (생물전환에 의한 발효 목초액의 항산화 활성)

  • Cho, Young-Ho;Cho, Jae-Soo;Lee, Gye-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4434-4442
    • /
    • 2011
  • Reactive oxygen species (ROS) are reactive and potentially harmful to cells, causing oxidation of lipids, proteins, and DNA. In humans, the deleterious effects of ROS have been linked with aging, carcinogenesis, and atherosclerosis. In order to investigate an antioxidant activity of wood vinegar by bioconversion, we preferentially analyzed the total acidity, acetic acid, pH, and contents of total polyphenols and flavonoids, respectively. Also, we evaluated the scavenging abilities on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, superoxide anion radicals, hydrogen peroxide radicals, and nitric oxide radicals. The total acidity and amount of acetic acid of wood vinegar after bioconversion were lower than those of wood vinegar before bioconversion, but the pH was higher than that of wood vinegar before bioconversion. The contents of total polyphenols and flavonoids of wood vinegar after bioconversion were 11.17 mg/$m{\ell}$ and 0.42 mg/$m{\ell}$, respectively. The $SC_{50}$ values were in order of superoxide anion radical scavenging activity < DPPH radical scavenging activity < hydrogen peroxide radical scavenging activity < nitric oxide radical scavenging activity. Therefore, these results suggest that wood vinegar by bioconversion can be useful as primary antioxidants for medicines and cosmetics.

Short Heterodimer Partner as a Regulator in OxLDL-induced Signaling Pathway

  • Kimpak, Young-Mi
    • Proceedings of the PSK Conference
    • /
    • 2001.10a
    • /
    • pp.109-113
    • /
    • 2001
  • Oxidized low-density lipoprotein (oxLDL) has been shown to modulate transactivations by the peroxisome proliferator activated receptor (PPAR)$\gamma$ and nuclear factor-kappa B (NF$\kappa$B). In this study, the oxLDL signaling pathways involved with the NF$\kappa$B transactivation were investigated by utilizing a reporter construct driven by three upstream NF$\kappa$B binding sites, and various pharmacological inhibitors. OxLDL and its constituent lysophophatidylcholine (lysoPC) induced a rapid and transient increase of intracellular calcium and stimulated the NF-KB transactivation in resting RAW264.7 macrophage cells in an oxidation-dependent manner. The NF$\kappa$B activation by oxLDL or lysoPC was inhibited by protein kinase C inhibitors or an intracellular calcium chelator. Tyrosine kinase or PI3 kinase inhibitors did not block the NF$\kappa$B transactivation. Furthermore, the oxLDL-induced NF$\kappa$B activity was abolished by the PPAR$\gamma$ ligands. When the endocytosis of oxLDL was blocked by cytochalasin B, the NF$\kappa$B transactivation by oxLDL was synergistically increased, while PPAR transactivation was blocked. These results suggest that oxLDL activates NF-$\kappa$B in resting macrophages via protein kinase C- and/or calcium-dependent pathways, which does not involve the endocytic processing of oxLDL. The endocytosis-dependent PPAR$\gamma$ activation by oxLDL may function as an inactivation route of the oxLDL induced NF$\kappa$B signal. Short heterodimer partner (SHP), specifically expressed in liver and a limited number of other tissues, is an unusual orphan nuclear receptor that lacks the conventional DNA-binding domain. In this work, we found that SHP expression is abundant in murine macrophage cell line RAW 264.7 but suppressed by oxLDL and its constituent I3-HODE, a ligand for peroxisome proliferator-activated receptor y. Furthermore, SHP acted as a transcription coactivator of nuclear factor-$\kappa$B (NF$\kappa$B) and was essential for the previously described NF$\kappa$B transactivation by lysoPC, one of the oxLDL constituents. Accordingly, NF$\kappa$B, transcriptionally active in the beginning, became progressively inert in oxLDL-treated RAW 264.7 cells, as oxLDL decreased the SHP expression. Thus, SHP appears to be an important modulatory component to regulate the transcriptional activities of NF$\kappa$B in oxLDL-treated, resting macrophage cells.

  • PDF

Biological Activities of Methanol Extract of Angelica gigas Nakai (참당귀 Methanol 추출물의 생리활성)

  • Park, Kyung-Wuk;Choi, Sa-Ra;Hong, Hye-Ran;Kim, Jae-Yong;Shon, Mi-Yae;Seo, Kwon-Il
    • Food Science and Preservation
    • /
    • v.14 no.6
    • /
    • pp.655-661
    • /
    • 2007
  • The biological activities of methanol extracts of Angelica gigas Nakai, such as antioxidation, anticancer and immuno-activity, were investigated in relation to development of functional foods. Anti-oxidation activity in the methanol extracts were assessed by hydrogen donating activity, reducing power and hydroxyl radical scavenging activity. Activities were dose-dependent over concentrations of 0.1, 0.5 and 1 mg/mL, with thehydrogen donating activity being over 50% at 1 mg/mL concentration. The methanol extracts inhibited the proliferation of SW480 cells in a dose-dependent manner, and chromatin condensation and apoptotic bodies were observed by fluorescence microcopy in the cells treated with the extracts for 24 hr. Caspase-3 activity was also increased in a dose-dependent manner in cells treated with the extracts relative to control cells. The extracts did not induce the proliferation of mouse spleen cells or NO production in macrophage cells (RAW 264.7). These results show that the methanol extract had slight anti-oxidative activity and did not increase immuno-activity, but inhibited proliferation of SW480 through apoptosis via a caspase dependent pathway.

Effect of Onion Consumption on Cardiovascular Disease in Human Intervention Studies: A Literature Review (국내.외 인체중재연구를 통해 살펴 본 양파의 심혈관계 질환 개선효과에 관한 고찰)

  • Kim, Jung-Mi;Park, Eun-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.10
    • /
    • pp.1565-1572
    • /
    • 2010
  • Onion (Allium cepa L.) production in Korea has increased gradually over the past 15 years, placing second in food consumption survey with 20.6 g daily intake in 2006. Onions, used as an ingredient in many dishes and accepted by almost all traditions and cultures, have been reported to have a range of health benefits which include anticarcinogenic, antiasthmatic, antibiotic, and antioxidative effects. These effects may be attributable to a powerful flavonoid pigment-containing compounds, such as quercetin and alk(en)yl cysteine sulphoxides (ACSOs). Although antiplatelet and antithrombotic activities of onion have been confirmed by many of in vitro or animal studies, only a few human intervention studies have been examined. The majority of human studies identified that onion improves some cardiovascular markers such as lipid profile and platelet coagulant. With regard to antioxidative effects, somewhat positive effects are confirmed through strengthening the resistance of oxidative DNA damage in lymphocyte and urine, while most studies failed to find inhibitory effects on LDL oxidation. The discrepancies among studies might be ascribed to producing area, processing methods of onion, dosage, subject characteristics, study duration, and measurement methods. In this review, we focused on the preventive effect of cardiovascular disease through onion consumption in human intervention studies.

Organic acid production and phosphate solubilization by Enterobacter intermedium 60-2G (Enterobacter intermedium 60- 2G의 유기산 생성과 불용성인의 가용화)

  • Kim, Kil-Yong;Hwangbo, Hoon;Kim, Yong-Woong;Kim, Hyo-Jeong;Park, Keun-Hyung;Kim, Young-Cheol;Seong, Ki-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.1
    • /
    • pp.59-67
    • /
    • 2002
  • A phosphate solubilizing bacterium. strain 60-2G, possessing a strong ability to solubilize insoluble phosphate was isolated from the rhizosphere of grass. On the basis of GC-FAME profile, carbon utilization pattern, and the DNA sequence of a conserved partial 16S rRNA gene, the 60-2G was identified as Enterobacter intermedium. The analysis by HPLC revealed that the strain 60-2G produced mainly gluconic and 2-ketogluconic acids with small amounts of lactic acid in broth culture medium containing hydroxyapatite. During the incubation period of the strain 60-2G in broth culture, pH of the medium decreased upto 3.8 while the soluble phosphate concentration increased. The reversed correlation between pH and soluble phosphate concentration indicated that the solubility of P was due to the produced organic acids. The sequence homology of the deduced amino acids suggested that E. intermedium 60-2G synthesized PQQ which is essential for the oxidation of glucose by glucose dehydrogenase.

Identification and validation of putative biomarkers by in silico analysis, mRNA expression and oxidative stress indicators for negative energy balance in buffaloes during transition period

  • Savleen Kour;Neelesh Sharma;Praveen Kumar Guttula;Mukesh Kumar Gupta;Marcos Veiga dos Santos;Goran Bacic;Nino Macesic;Anand Kumar Pathak;Young-Ok Son
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.522-535
    • /
    • 2024
  • Objective: Transition period is considered from 3 weeks prepartum to 3 weeks postpartum, characterized with dramatic events (endocrine, metabolic, and physiological) leading to occurrence of production diseases (negative energy balance/ketosis, milk fever etc). The objectives of our study were to analyze the periodic concentration of serum beta-hydroxy butyric acid (BHBA), glucose and oxidative markers along with identification, and validation of the putative markers of negative energy balance in buffaloes using in-silico and quantitative real time-polymerase chain reaction (qRT-PCR) assay. Methods: Out of 20 potential markers of ketosis identified by in-silico analysis, two were selected and analyzed by qRT-PCR technique (upregulated; acetyl serotonin o-methyl transferase like and down regulated; guanylate cyclase activator 1B). Additional two sets of genes (carnitine palmotyl transferase A; upregulated and Insulin growth factor; downregulated) that have a role of hepatic fatty acid oxidation to maintain energy demands via gluconeogenesis were also validated. Extracted cDNA (complementary deoxyribonucleic acid) from the blood of the buffaloes were used for validation of selected genes via qRTPCR. Concentrations of BHBA, glucose and oxidative stress markers were identified with their respective optimized protocols. Results: The analysis of qRT-PCR gave similar trends as shown by in-silico analysis throughout the transition period. Significant changes (p<0.05) in the levels of BHBA, glucose and oxidative stress markers throughout this period were observed. This study provides validation from in-silico and qRT-PCR assays for potential markers to be used for earliest diagnosis of negative energy balance in buffaloes. Conclusion: Apart from conventional diagnostic methods, this study improves the understanding of putative biomarkers at the molecular level which helps to unfold their role in normal immune function, fat synthesis/metabolism and oxidative stress pathways. Therefore, provides an opportunity to discover more accurate and sensitive diagnostic aids.