Organic acid production and phosphate solubilization by Enterobacter intermedium 60-2G

Enterobacter intermedium 60- 2G의 유기산 생성과 불용성인의 가용화

  • Kim, Kil-Yong (Division of Applied Bioscience and Biotechnology, College of Agriculture, Chonnam National University) ;
  • Hwangbo, Hoon (Division of Applied Bioscience and Biotechnology, College of Agriculture, Chonnam National University) ;
  • Kim, Yong-Woong (Division of Applied Bioscience and Biotechnology, College of Agriculture, Chonnam National University) ;
  • Kim, Hyo-Jeong (Division of Applied Plant Science, Institute of Biotechnology, College of Agriculture, Chonnam National University) ;
  • Park, Keun-Hyung (Division of Applied Bioscience and Biotechnology, College of Agriculture, Chonnam National University) ;
  • Kim, Young-Cheol (Division of Applied Plant Science, Institute of Biotechnology, College of Agriculture, Chonnam National University) ;
  • Seong, Ki-Young (Division of Applied Plant Science, Institute of Biotechnology, College of Agriculture, Chonnam National University)
  • 김길용 (전남대학교 농과대학 응용생물공학부) ;
  • 황보훈 (전남대학교 농과대학 응용생물공학부) ;
  • 김용웅 (전남대학교 농과대학 응용생물공학부) ;
  • 김효정 (전남대학교 농과대학 응용식물학부) ;
  • 박근형 (전남대학교 농과대학 응용생물공학부) ;
  • 김영철 (전남대학교 농과대학 응용식물학부) ;
  • 성기영 (전남대학교 농과대학 응용식물학부)
  • Received : 2002.02.09
  • Accepted : 2001.12.06
  • Published : 2002.02.28

Abstract

A phosphate solubilizing bacterium. strain 60-2G, possessing a strong ability to solubilize insoluble phosphate was isolated from the rhizosphere of grass. On the basis of GC-FAME profile, carbon utilization pattern, and the DNA sequence of a conserved partial 16S rRNA gene, the 60-2G was identified as Enterobacter intermedium. The analysis by HPLC revealed that the strain 60-2G produced mainly gluconic and 2-ketogluconic acids with small amounts of lactic acid in broth culture medium containing hydroxyapatite. During the incubation period of the strain 60-2G in broth culture, pH of the medium decreased upto 3.8 while the soluble phosphate concentration increased. The reversed correlation between pH and soluble phosphate concentration indicated that the solubility of P was due to the produced organic acids. The sequence homology of the deduced amino acids suggested that E. intermedium 60-2G synthesized PQQ which is essential for the oxidation of glucose by glucose dehydrogenase.

강한 인산 가용력을 가진 인산 용해 세균인 균주 60-2G를 잔디의 근권에서 분리하였다. GC-FAME구조와 탄소이용형태 및 16S rRNA의 부분 염기서열 분석을 통해 균주 60-2G는 Enterobacter intermedium으로 동정되었다. Hydroxyapatite를 첨가한 배지와 생장 시킨 균주 60-2G는 gluconic acid 와 2-ketogluconic acid 및 소량의 lactic acid를 생성하였다. 균주 60-2G의 생장 기간동안 배지의 pH는 3.8 까지 낮아지는 반면에 배지의 유효 인산 농도는 증가하였다. 배지의 낮은 pH와 유효인산농도의 증가는 역 상관관계이며, 이는 균주 60-2G가 생성하는 유기산에 의한 영향이다. E. intermedium 60-2G 균주는 유기산 생성에 관여하는 glucose dehydrogenase의 co-factor인 PQQ를 생성하였으며, pqq의 부분 염기서열 분석 결과 기존에 보고된 서열과 85% 이상의 상동성을 가지고 있었다.

Keywords

References

  1. Babenko, Y. S., G. I.Iyiygtna, E. F. Grigorev, L. M. Dolgikh, and T. I. Borlsova, 1984. BlolotScal actjvlty and Physicai-biochemlcal propertles of phosphate-dissolvlng bacterla. (Engllsh translation). Mikcbiobiologtya, 53,533-539
  2. Bar-Yoself, R, R D. Rogeis, J. H. Wolfam, and E. Rlchman, 1999. Pseudomonos cepocia-medlated rock phosphate solubllizatlon In kaollnlte and montmorillonlte suspensions. Soil Sci. Soc. Am. J., 63,1703-1708 https://doi.org/10.2136/sssaj1999.6361703x
  3. Boiardi, J. L, M. L. Galar, and O. M. Neljssel, 1996. POO-linked extracellular glucose oxidatlon and chemotaxls towards this cofactor in rhlzobla. FEMS Micnobiol. Lett.,140, 179-184 https://doi.org/10.1111/j.1574-6968.1996.tb08333.x
  4. Brady, N. C. 1990. The Nature and Properties of Soas, 351-380 pp. Macmillan, New York
  5. El-Glbaly, M. H.. F. M. El-Reweiny, M. Abdel-Nasser, and TA. El-Dahtory, 1977. Studies on phosphate-solubllizing bacteria in soil and rhIzosphere of diSerent plants. II. Selection of the most eStclent phosphate-dlssolvers and their morphological groupIng. , 132, 240-244
  6. Goldstein, A. H. and S. T. Liu, 1987. Molecular doning and regulation of a mineral phosphate solubillzlng gene from Erwtnia herbtoola. Bto/Technol. 5, 72-74
  7. Illmer, P. and F. Schinner, 1992. Solubilization of lnoiganlc phosphates by microorganisms isolated from forest soils. Soil Biol. Biochem., 24, 389-395 https://doi.org/10.1016/0038-0717(92)90199-8
  8. Illmer, P., A. Baibato, and F. Schinner, 1995. Solublllzation of hardly-soluble A1PO4 with P-solubllizing mlcroorganism. Soil Biol. Biochem., 27, 265-270 https://doi.org/10.1016/0038-0717(94)00205-F
  9. Kim, K. Y., D. Jordan, and H. B. Krishnan, 1997. Rohnella oquailis, a bacterium isolated from soybean rhlzosphere, can solubillze hydroxyapatite. FEMS MIcmbioL Lett., 153,273-277 https://doi.org/10.1016/S0378-1097(97)00246-2
  10. Kim, K.Y., D. Jordan, and H. B. Krlshnan. 1998, Expression of genes from Rahnella oquatlis that are necessary for mineral phosphate solubillzatlon in Escherichia coli. FEMS Microbiol. Lett., 159,121-127 https://doi.org/10.1111/j.1574-6968.1998.tb12850.x
  11. Leyval, C. and J. Bertheln, 1989. Interactions between Laccaria laccata, Agrobacterium radiobacter and beech roots: Influence on P, K, Mg, and Fe mobilization from mInerals and plant growth. , 117, 103-110 https://doi.org/10.1007/BF02206262
  12. Ulu, S. T., L. Y. Lee, C. Y. Tai, C. H. Hung, Y. S. Chang, J. H. Wolfram, R Rogers, and A H. Goldstein, 1992. ClonIng of an Erwinia herbIcola gene necessary for gluconlc acid production and enhanced mineral phosphate solubilizatlon in Escherichia coli HB 101: nucleotlde sequence and propable Involvement in biosynthesis of the coenzyme pyrroloqulnollne qulnone. J. Bacteriol., 174,5814-5819 https://doi.org/10.1128/jb.174.18.5814-5819.1992
  13. Meulenberg, J. J. M., E. SelUnk, N. H. Rlegman, and P. W. Postma, 1992. Nucleotide sequence and structure of the Klebsiella pneumonlae pqq operon. Mol. Gen. Genet, 232,284-294
  14. Moghimi, A. and M. E. Tate, 1978. Does 2-ketogluconate chelate calcium in the pH range 2.4 to 6.4 ? Soil Biol Biochem., 10,289-292 https://doi.org/10.1016/0038-0717(78)90024-X
  15. Moghimi, A., M. E. Tate, and J. M. Oades, 1978. Characterization of ihlzosphere products especially 2-ketogluconic add. SOBBiol. Biochem. 10, 283-287
  16. Olsen, S. R. and L. E. Sommers, 1982. Phosphorus, In : Method of soil analysis part 2, Chemlcal and mlcrobial properties, Eds A. L. Page, R H. Miller, and D. R. Keeney, pp. 403-430. Amerlcan Society of Agronomy, Madlson,Wisconsin
  17. Sampie, E. C., R J. Soper, and G. J. Racz, 1980. ReacUons of phosphate fertilizers tn soils, hi: Ihe role of phosphorus in agriculture, eds. F. E. Khasawneh, E.C. Sample, and E.J. Kamprath, pp. 263-310. Amerlcan Soclety of Agronomy, Madfson, Wisconsin (1980)
  18. Spaber, J. I. 1957. Solution of mineral phosphates by soil bacteria. Nature, 180,994-995 https://doi.org/10.1038/180994a0
  19. Svltel, J. J. and E. Sturdlk, 1995. 2-ketog1ucon1c acid production by Acetobacter pasteurianus. AppL Blochaem. Biotech., 53, 53-63 https://doi.org/10.1007/BF02783481
  20. Van Schle, B. J., O. H. De Moot, J. D. Linton, J. P. Van Dljken, and J. G. Kuenen, 1987. PQQ-dependent production of gluconlc acid by Acinetobacter, Agrobacterium and Rhizobium species. J. Gen. Microbiol,133,867-875
  21. Young, J. P. W., H. L. Downer, and B. D. Eardly, 1991. Phylogeny of the phototroplc Rhlzoblum strain BTAll by polymerase chain reaction-based sequencing of 16S rRNA gene segment J. Bacteriol., 7, 2271-2277