Browse > Article

Organic acid production and phosphate solubilization by Enterobacter intermedium 60-2G  

Kim, Kil-Yong (Division of Applied Bioscience and Biotechnology, College of Agriculture, Chonnam National University)
Hwangbo, Hoon (Division of Applied Bioscience and Biotechnology, College of Agriculture, Chonnam National University)
Kim, Yong-Woong (Division of Applied Bioscience and Biotechnology, College of Agriculture, Chonnam National University)
Kim, Hyo-Jeong (Division of Applied Plant Science, Institute of Biotechnology, College of Agriculture, Chonnam National University)
Park, Keun-Hyung (Division of Applied Bioscience and Biotechnology, College of Agriculture, Chonnam National University)
Kim, Young-Cheol (Division of Applied Plant Science, Institute of Biotechnology, College of Agriculture, Chonnam National University)
Seong, Ki-Young (Division of Applied Plant Science, Institute of Biotechnology, College of Agriculture, Chonnam National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.35, no.1, 2002 , pp. 59-67 More about this Journal
Abstract
A phosphate solubilizing bacterium. strain 60-2G, possessing a strong ability to solubilize insoluble phosphate was isolated from the rhizosphere of grass. On the basis of GC-FAME profile, carbon utilization pattern, and the DNA sequence of a conserved partial 16S rRNA gene, the 60-2G was identified as Enterobacter intermedium. The analysis by HPLC revealed that the strain 60-2G produced mainly gluconic and 2-ketogluconic acids with small amounts of lactic acid in broth culture medium containing hydroxyapatite. During the incubation period of the strain 60-2G in broth culture, pH of the medium decreased upto 3.8 while the soluble phosphate concentration increased. The reversed correlation between pH and soluble phosphate concentration indicated that the solubility of P was due to the produced organic acids. The sequence homology of the deduced amino acids suggested that E. intermedium 60-2G synthesized PQQ which is essential for the oxidation of glucose by glucose dehydrogenase.
Keywords
gluconic acid; hydroxyapatite; 2-ketogluconic acid; phosphorus; Enterobacter intermedium;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Brady, N. C. 1990. The Nature and Properties of Soas, 351-380 pp. Macmillan, New York
2 Ulu, S. T., L. Y. Lee, C. Y. Tai, C. H. Hung, Y. S. Chang, J. H. Wolfram, R Rogers, and A H. Goldstein, 1992. ClonIng of an Erwinia herbIcola gene necessary for gluconlc acid production and enhanced mineral phosphate solubilizatlon in Escherichia coli HB 101: nucleotlde sequence and propable Involvement in biosynthesis of the coenzyme pyrroloqulnollne qulnone. J. Bacteriol., 174,5814-5819   DOI
3 Olsen, S. R. and L. E. Sommers, 1982. Phosphorus, In : Method of soil analysis part 2, Chemlcal and mlcrobial properties, Eds A. L. Page, R H. Miller, and D. R. Keeney, pp. 403-430. Amerlcan Society of Agronomy, Madlson,Wisconsin
4 Sampie, E. C., R J. Soper, and G. J. Racz, 1980. ReacUons of phosphate fertilizers tn soils, hi: Ihe role of phosphorus in agriculture, eds. F. E. Khasawneh, E.C. Sample, and E.J. Kamprath, pp. 263-310. Amerlcan Soclety of Agronomy, Madfson, Wisconsin (1980)
5 Young, J. P. W., H. L. Downer, and B. D. Eardly, 1991. Phylogeny of the phototroplc Rhlzoblum strain BTAll by polymerase chain reaction-based sequencing of 16S rRNA gene segment J. Bacteriol., 7, 2271-2277
6 Illmer, P. and F. Schinner, 1992. Solubilization of lnoiganlc phosphates by microorganisms isolated from forest soils. Soil Biol. Biochem., 24, 389-395   DOI   ScienceOn
7 Svltel, J. J. and E. Sturdlk, 1995. 2-ketog1ucon1c acid production by Acetobacter pasteurianus. AppL Blochaem. Biotech., 53, 53-63   DOI   ScienceOn
8 Boiardi, J. L, M. L. Galar, and O. M. Neljssel, 1996. POO-linked extracellular glucose oxidatlon and chemotaxls towards this cofactor in rhlzobla. FEMS Micnobiol. Lett.,140, 179-184   DOI
9 Kim, K. Y., D. Jordan, and H. B. Krishnan, 1997. Rohnella oquailis, a bacterium isolated from soybean rhlzosphere, can solubillze hydroxyapatite. FEMS MIcmbioL Lett., 153,273-277   DOI   ScienceOn
10 Babenko, Y. S., G. I.Iyiygtna, E. F. Grigorev, L. M. Dolgikh, and T. I. Borlsova, 1984. BlolotScal actjvlty and Physicai-biochemlcal propertles of phosphate-dissolvlng bacterla. (Engllsh translation). Mikcbiobiologtya, 53,533-539
11 Van Schle, B. J., O. H. De Moot, J. D. Linton, J. P. Van Dljken, and J. G. Kuenen, 1987. PQQ-dependent production of gluconlc acid by Acinetobacter, Agrobacterium and Rhizobium species. J. Gen. Microbiol,133,867-875
12 Leyval, C. and J. Bertheln, 1989. Interactions between Laccaria laccata, Agrobacterium radiobacter and beech roots: Influence on P, K, Mg, and Fe mobilization from mInerals and plant growth. , 117, 103-110   DOI
13 Goldstein, A. H. and S. T. Liu, 1987. Molecular doning and regulation of a mineral phosphate solubillzlng gene from Erwtnia herbtoola. Bto/Technol. 5, 72-74
14 Moghimi, A. and M. E. Tate, 1978. Does 2-ketogluconate chelate calcium in the pH range 2.4 to 6.4 ? Soil Biol Biochem., 10,289-292   DOI   ScienceOn
15 Moghimi, A., M. E. Tate, and J. M. Oades, 1978. Characterization of ihlzosphere products especially 2-ketogluconic add. SOBBiol. Biochem. 10, 283-287
16 Meulenberg, J. J. M., E. SelUnk, N. H. Rlegman, and P. W. Postma, 1992. Nucleotide sequence and structure of the Klebsiella pneumonlae pqq operon. Mol. Gen. Genet, 232,284-294
17 Spaber, J. I. 1957. Solution of mineral phosphates by soil bacteria. Nature, 180,994-995   DOI   PUBMED   ScienceOn
18 Bar-Yoself, R, R D. Rogeis, J. H. Wolfam, and E. Rlchman, 1999. Pseudomonos cepocia-medlated rock phosphate solubllizatlon In kaollnlte and montmorillonlte suspensions. Soil Sci. Soc. Am. J., 63,1703-1708   DOI   ScienceOn
19 Kim, K.Y., D. Jordan, and H. B. Krlshnan. 1998, Expression of genes from Rahnella oquatlis that are necessary for mineral phosphate solubillzatlon in Escherichia coli. FEMS Microbiol. Lett., 159,121-127   DOI
20 El-Glbaly, M. H.. F. M. El-Reweiny, M. Abdel-Nasser, and TA. El-Dahtory, 1977. Studies on phosphate-solubllizing bacteria in soil and rhIzosphere of diSerent plants. II. Selection of the most eStclent phosphate-dlssolvers and their morphological groupIng. , 132, 240-244
21 Illmer, P., A. Baibato, and F. Schinner, 1995. Solublllzation of hardly-soluble A1PO4 with P-solubllizing mlcroorganism. Soil Biol. Biochem., 27, 265-270   DOI   ScienceOn