• Title/Summary/Keyword: DNA molecules

Search Result 663, Processing Time 0.025 seconds

A LuxR-type Transcriptional Regulator, PsyR, Coordinates Regulation of Pathogenesis-related Genes in Pseudomonas syringae pv. tabaci (Pseudomonas syringae pv. tabaci 에서 LuxR-type 전사조절자인 PsyR에 의한 병원성 유전자들의 조절)

  • Choi, Yeon Hee;Lee, Jun Seung;Yun, Sora;Baik, Hyung Suk
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.136-150
    • /
    • 2015
  • Pseudomonas syringae pathovar tabaci is a plant pathogenic bacterium that causes wildfire disease in tobacco plants. In P. syringae pv. tabaci, PsyI, a LuxI-type protein, acts as an AHL synthase, while primary and secondary sequence analysis of PsyR has revealed that it is a homolog of the LuxR-type transcriptional regulator that responds to AHL molecules. In this study, using phenotypic and genetic analyses in P. syringae pv. tabaci, we show the effect of PsyR protein as a quorum-sensing (QS) transcriptional regulator. Regulatory effects of PsyR on swarming motility and production of siderophores, tabtoxin, and N-acyl homoserine lactones were examined via phenotypic assays, and confirmed by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Further qRT-PCR showed that PsyR regulates expression of these virulence genes in response to environmental signals. However, an upstream region of the gene was not bound with purified MBP-PsyR protein; rather, PsyR was only able to shift the upstream region of psyI. These results suggested that PsyR may be indirectly controlled via intermediate-regulatory systems and that auto-regulation by PsyR does not occur.

Synthesis and Secretion of Mutant Mannose-Binding Lectin (돌연변이 Mannose-binding Lectin 합성과 세포 병리적 연구)

  • Jang, Ho-Jung;Chung, Kyung Tae
    • Journal of Life Science
    • /
    • v.23 no.3
    • /
    • pp.347-354
    • /
    • 2013
  • Innate immunity is the ability to differentiate infectious agents from self. The innate immune system is comprised of a complicated network of recognition and effector molecules that act together to protect the host in the early stage of an infectious challenge. Mannose-binding lectin (MBL or mannose-binding protein, MBP) belongs to the family of $Ca^{2+}$-dependent lectins (C-type lectin with a collagen-like domain), which are considered an important component of innate immunity. While it is associated with increased risk and severity of infections and autoimmunity, the most frequent immuno-deficiency syndrome was reported to be low MBL level in blood. Deficiency of human MBL is caused by mutations in the coding region of the MBL gene. Rat homologue gene of human MBL gene was used to study functions of wild type and mutant MBL proteins. Although extensive studies have yielded the structural information of MBL, the functions of MBL, especially mutant MBL, still require investigation. We previously reported the cloning of rat wild-type MBL gene and the production of a truncated form of MBL protein and its antibody. Here, we present the cloning of mutant MBL cDNA in collagen-like domain (R40C, G42D, and G45E) using site-directed mutagenesis and differential behaviors of wild type and mutant MBL in cells. The major difference between wild type and mutant MBL was that while wild type MBL was secreted, mutant MBL was inhibited for secretion, retained in endoplasmic reticulum, and still functioned as a lectin.

Transfection of Mesenchymal Stem Cells with the FGF-2 Gene Improves Their Survival Under Hypoxic Conditions

  • Song, Heesang;Kwon, Kihwan;Lim, Soyeon;Kang, Seok-Min;Ko, Young-Guk;Xu, ZhengZhe;Chung, Ji Hyung;Kim, Byung-Soo;Lee, Hakbae;Joung, Boyoung;Park, Sungha;Choi, Donghoon;Jang, Yangsoo;Chung, Nam-Sik;Yoo, Kyung-Jong;Hwang, Ki-Chul
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.402-407
    • /
    • 2005
  • Bone marrow mesenchymal stem cells (MSCs) have shown potential for cardiac repair following myocardial injury, but this approach is limited by their poor viability after transplantation. To reduce cell loss after transplantation, we introduced the fibroblast growth factor-2 (FGF-2) gene ex vivo before transplantation. The isolated MSCs produced colonies with a fibroblast-like morphology in 2 weeks; over 95% expressed CD71, and 28% expressed the cardiomyocyte-specific transcription factor, Nkx2.5, as well as ${\alpha}$-skeletal actin, Nkx2.5, and GATA4. In hypoxic culture, the FGF-2-transfected MSCs (FGF-2-MSCs) secreted increased levels of FGF-2 and displayed a threefold increase in viability, as well as increased expression of the anti-apoptotic gene, Bcl2, and reduced DNA laddering. They had functional adrenergic receptors, like cardiomyocytes, and exposure to norepinephrine led to phosphorylation of ERK1/2. Viable cells persisted 4 weeks after implantation of $5.0{\times}10^5$ FGF-2-MSCs into infarcted myocardia. Expression of cardiac troponin T (CTn T) and a voltage-gated $Ca^{2+}$ channel (CaV2.1) increased, and new blood vessels formed. These data suggest that genetic modification of MSCs before transplantation could be useful for treating myocardial infarction and end-stage cardiac failure.

Isolation and Characterization of a Novel Calcium/Calmodulin-Dependent Protein Kinase, AtCK, from Arabidopsis

  • Jeong, Jae Cheol;Shin, Dongjin;Lee, Jiyoung;Kang, Chang Ho;Baek, Dongwon;Cho, Moo Je;Kim, Min Chul;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.276-282
    • /
    • 2007
  • Protein phosphorylation is one of the major mechanisms by which eukaryotic cells transduce extracellular signals into intracellular responses. Calcium/calmodulin ($Ca^{2+}/CaM$)-dependent protein phosphorylation has been implicated in various cellular processes, yet little is known about $Ca^{2+}/CaM$-dependent protein kinases (CaMKs) in plants. From an Arabidopsis expression library screen using a horseradish peroxidase-conjugated soybean calmodulin isoform (SCaM-1) as a probe, we isolated a full-length cDNA clone that encodes AtCK (Arabidopsis thaliana calcium/calmodulin-dependent protein kinase). The predicted structure of AtCK contains a serine/threonine protein kinase catalytic domain followed by a putative calmodulin-binding domain and a putative $Ca^{2+}$-binding domain. Recombinant AtCK was expressed in E. coli and bound to calmodulin in a $Ca^{2+}$-dependent manner. The ability of CaM to bind to AtCK was confirmed by gel mobility shift and competition assays. AtCK exhibited its highest levels of autophosphorylation in the presence of 3 mM $Mn^{2+}$. The phosphorylation of myelin basic protein (MBP) by AtCK was enhanced when AtCK was under the control of calcium-bound CaM, as previously observed for other $Ca^{2+}/CaM$-dependent protein kinases. In contrast to maize and tobacco CCaMKs (calcium and $Ca^{2+}/CaM$-dependent protein kinase), increasing the concentration of calmodulin to more than $3{\mu}M$ suppressed the phosphorylation activity of AtCK. Taken together our results indicate that AtCK is a novel Arabidopsis $Ca^{2+}/CaM$-dependent protein kinase which is presumably involved in CaM-mediated signaling.

Meta- and Gene Set Analysis of Stomach Cancer Gene Expression Data

  • Kim, Seon-Young;Kim, Jeong-Hwan;Lee, Heun-Sik;Noh, Seung-Moo;Song, Kyu-Sang;Cho, June-Sik;Jeong, Hyun-Yong;Kim, Woo Ho;Yeom, Young-Il;Kim, Nam-Soon;Kim, Sangsoo;Yoo, Hyang-Sook;Kim, Yong Sung
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.200-209
    • /
    • 2007
  • We generated gene expression data from the tissues of 50 gastric cancer patients, and applied meta-analysis and gene set analysis to this data and three other stomach cancer gene expression data sets to define the gene expression changes in gastric tumors. By meta-analysis we identified genes consistently changed in gastric carcinomas, while gene set analysis revealed consistently changed biological themes. Genes and gene sets involved in digestion, fatty acid metabolism, and ion transport were consistently down-regulated in gastric carcinomas, while those involved in cellular proliferation, cell cycle, and DNA replication were consistently up-regulated. We also found significant differences between the genes and gene sets expressed in diffuse and intestinal type gastric carcinoma. By gene set analysis of cytogenetic bands, we identified many chromosomal regions with possible gross chromosomal changes (amplifications or deletions). Similar analysis of transcription factor binding sites (TFBSs), revealed transcription factors that may have caused the observed gene expression changes in gastric carcinomas, and we confirmed the overexpression of one of these, E2F1, in many gastric carcinomas by tissue array and immunohistochemistry. We have incorporated the results of our meta- and gene set analyses into a web accessible database (http://human-genome.kribb.re.kr/stomach/).

Retinoid X Receptor α Overexpression Alleviates Mitochondrial Dysfunction-induced Insulin Resistance through Transcriptional Regulation of Insulin Receptor Substrate 1

  • Lee, Seung Eun;Koo, Young Do;Lee, Ji Seon;Kwak, Soo Heon;Jung, Hye Seung;Cho, Young Min;Park, Young Joo;Chung, Sung Soo;Park, Kyong Soo
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.356-361
    • /
    • 2015
  • Mitochondrial dysfunction is associated with insulin resistance and diabetes. We previously showed that retinoid X receptor ${\alpha}$ ($RXR{\alpha}$) played an important role in transcriptional regulation of oxidative phosphorylation (OXPHOS) genes in cells with mitochondrial dysfunction caused by mitochondrial DNA mutation. In this study, we investigated whether mitochondrial dysfunction induced by incubation with OXPHOS inhibitors affects insulin receptor substrate 1 (IRS1) mRNA and protein levels and whether $RXR{\alpha}$ activation or overexpression can restore IRS1 expression. Both IRS1 and $RXR{\alpha}$ protein levels were significantly reduced when C2C12 myotubes were treated with the OXPHOS complex inhibitors, rotenone and antimycin A. The addition of $RXR{\alpha}$ agonists, 9-cis retinoic acid (9cRA) and LG1506, increased IRS1 transcription and protein levels and restored mitochondrial function, which ultimately improved insulin signaling. $RXR{\alpha}$ overexpression also increased IRS1 transcription and mitochondrial function. Because $RXR{\alpha}$ overexpression, knock-down, or activation by LG1506 regulated IRS1 transcription mostly independently of mitochondrial function, it is likely that $RXR{\alpha}$ directly regulates IRS1 transcription. Consistent with the hypothesis, we showed that $RXR{\alpha}$ bound to the IRS1 promoter as a heterodimer with peroxisome proliferator-activated receptor ${\delta}$ ($PPAR{\delta}$). These results suggest that $RXR{\alpha}$ overexpression or activation alleviates insulin resistance by increasing IRS1 expression.

Characterization of TNNC1 as a Novel Tumor Suppressor of Lung Adenocarcinoma

  • Kim, Suyeon;Kim, Jaewon;Jung, Yeonjoo;Jun, Yukyung;Jung, Yeonhwa;Lee, Hee-Young;Keum, Juhee;Park, Byung Jo;Lee, Jinseon;Kim, Jhingook;Lee, Sanghyuk;Kim, Jaesang
    • Molecules and Cells
    • /
    • v.43 no.7
    • /
    • pp.619-631
    • /
    • 2020
  • In this study, we describe a novel function of TNNC1 (Troponin C1, Slow Skeletal and Cardiac Type), a component of actin-bound troponin, as a tumor suppressor of lung adenocarcinoma (LUAD). First, the expression of TNNC1 was strongly down-regulated in cancer tissues compared to matched normal lung tissues, and down-regulation of TNNC1 was shown to be strongly correlated with increased mortality among LUAD patients. Interestingly, TNNC1 expression was enhanced by suppression of KRAS, and ectopic expression of TNNC1 in turn inhibited KRASG12D-mediated anchorage independent growth of NIH3T3 cells. Consistently, activation of KRAS pathway in LUAD patients was shown to be strongly correlated with down-regulation of TNNC1. In addition, ectopic expression of TNNC1 inhibited colony formation of multiple LUAD cell lines and induced DNA damage, cell cycle arrest and ultimately apoptosis. We further examined potential correlations between expression levels of TNNC1 and various clinical parameters and found that low-level expression is significantly associated with invasiveness of the tumor. Indeed, RNA interference-mediated down-regulation of TNNC1 led to significant enhancement of invasiveness in vitro. Collectively, our data indicate that TNNC1 has a novel function as a tumor suppressor and is targeted for down-regulation by KRAS pathway during the carcinogenesis of LUAD.

Sensitivity Enhancement of Polydiacetylene Vesicles through Control of Particle Size and Polymerization Temperature (입자크기와 중합온도 제어를 통한 폴리다이아세틸렌의 센싱감도 향상)

  • Lee, Gil Sun;Oh, Jae Ho;Ahn, Dong June
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.400-404
    • /
    • 2011
  • Many studies on polydiacetylene(PDA) have been investigated to apply to chemical and biological sensors due to their unique optical properties of color change from blue to red and fluorescence change from non-fluorescence to red fluorescence. Especially, high sensitivity against specific molecules is very important to apply polydiacetylenes to various sensors. In this study, we examined the effect of sensitivity enhancement of 10,12-pentacosadynoic acid(PCDA) vesicles in detection ${\alpha}$-cyclodextrin(CD) according to control of vesicle size by filters with different pore sizes and polymerization temperature. Colorimetric response(CR) was calculated using visible spectrometer. In order to investigate the effect of vesicle size on sensitivity of PDA vesicles, two PCDA vesicles were filtered without filtration and with 0.22 ${\mu}m$ filter. The two PCDA vesicles were polymerized at $25^{\circ}C$ and were incubated with ${\alpha}$-CD(5 mM) for 30 min. The CRs of the former and latter vesicles were 31.4% and 74.0%, respectively. Then, two PCDA vesicles filtered with 0.22 ${\mu}m$ filter were polymerized at $25^{\circ}C$ and $5^{\circ}C$ and were reacted with ${\alpha}$-CD(5 mM) for 30 min to examine the effect of polymerization temperature. The CRs of the former and latter vesicles were 74.0 and 99.2%, respectively. This suggests that vesicle sizes and polymerization temperature are key factors in enhancing the sensitivity of PDA vesicles. In addition, these results are expected to be useful to apply the PDA vesicles as biosensors to detect DNA, protein, and cells.

Characterization of a Novel DWD Protein that Participates in Heat Stress Response in Arabidopsis

  • Kim, Soon-Hee;Lee, Joon-Hyun;Seo, Kyoung-In;Ryu, Boyeong;Sung, Yongju;Chung, Taijoon;Deng, Xing Wang;Lee, Jae-Hoon
    • Molecules and Cells
    • /
    • v.37 no.11
    • /
    • pp.833-840
    • /
    • 2014
  • Cullin4-RING ubiquitin ligase (CRL4) is a family of multi-subunit E3 ligases. To investigate the possible involvement of CRL4 in heat stress response, we screened T-DNA insertion mutants of putative CRL4 substrate receptors that exhibited altered patterns in response to heat stress. One of the mutants exhibited heat stress tolerance and was named heat stress tolerant DWD1 (htd1). Introduction of HTD1 gene into htd1-1 led to recovery of heat sensitivity to the wild type level, confirming that the decrease of HTD1 transcripts resulted in heat tolerance. Therefore, HTD1 plays a negative role in thermotolerance in Arabidopsis. Additionally, HTD1 directly interacted with DDB1a in yeast two-hybrid assays and associated with DDB1b in vivo, supporting that it could be a part of a CRL4 complex. Various heat-inducible genes such as HSP14.7, HSP21, At2g03020 and WRKY28 were hyper-induced in htd1-1, indicating that HTD1 could function as a negative regulator for the expression of such genes and that these genes might contribute to thermotolerance of htd1-1, at least in part. HTD1 was associated with HSP90-1, a crucial regulator of thermotolerance, in vivo, even though the decrease of HTD1 did not affect the accumulation pattern of HSP90-1 in Arabidopsis. These findings indicate that a negative role of HTD1 in thermotolerance might be achieved through its association with HSP90-1, possibly by disturbing the action of HSP90-1, not by the degradation of HSP90-1. This study will serve as an important step toward understanding of the functional connection between CRL4-mediated processes and plant heat stress signaling.

Confirmation of Drought Tolerance of Ectopically Expressed AtABF3 Gene in Soybean

  • Kim, Hye Jeong;Cho, Hyun Suk;Pak, Jung Hun;Kwon, Tackmin;Lee, Jai-Heon;Kim, Doh-Hoon;Lee, Dong Hee;Kim, Chang-Gi;Chung, Young-Soo
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.413-422
    • /
    • 2018
  • Soybean transgenic plants with ectopically expressed AtABF3 were produced by Agrobacterium-mediated transformation and investigated the effects of AtABF3 expression on drought and salt tolerance. Stable Agrobacterium-mediated soybean transformation was carried based on the half-seed method (Paz et al. 2006). The integration of the transgene was confirmed from the genomic DNA of transformed soybean plants using PCR and the copy number of transgene was determined by Southern blotting using leaf samples from $T_2$ seedlings. In addition to genomic integration, the expression of the transgenes was analyzed by RT-PCR and most of the transgenic lines expressed the transgenes introduced. The chosen two transgenic lines (line #2 and #9) for further experiment showed the substantial drought stress tolerance by surviving even at the end of the 20-day of drought treatment. And the positive relationship between the levels of AtABF3 gene expression and drought-tolerance was confirmed by qRT-PCR and drought tolerance test. The stronger drought tolerance of transgenic lines seemed to be resulted from physiological changes. Transgenic lines #2 and #9 showed ion leakage at a significantly lower level (P < 0.01) than ${\underline{n}}on-{\underline{t}}ransgenic$ (NT) control. In addition, the chlorophyll contents of the leaves of transgenic lines were significantly higher (P < 0.01). The results indicated that their enhanced drought tolerance was due to the prevention of cell membrane damage and maintenance of chlorophyll content. Water loss by transpiration also slowly proceeded in transgenic plants. In microscopic observation, higher stomata closure was confirmed in transgenic lines. Especially, line #9 had 56% of completely closed stomata whereas only 16% were completely open. In subsequent salt tolerance test, the apparently enhanced salt tolerance of transgenic lines was measured in ion leakage rate and chlorophyll contents. Finally, the agronomic characteristics of ectopically expressed AtABF3 transgenic plants ($T_2$) compared to NT plants under regular watering (every 4 days) or low rate of watering condition (every 10 days) was investigated. When watered regularly, the plant height of drought-tolerant line (#9) was shorter than NT plants. However, under the drought condition, total seed weight of line #9 was significantly higher than in NT plants (P < 0.01). Moreover, the pods of NT plants showed severe withering, and most of the pods failed to set normal seeds. All the evidences in the study clearly suggested that overexpression of the AtABF3 gene conferred drought and salt tolerance in major crop soybean, especially under the growth condition of low watering.