Transfection of Mesenchymal Stem Cells with the FGF-2 Gene Improves Their Survival Under Hypoxic Conditions

  • Song, Heesang (Cardiovascular Research Institute, Brain Korea 21 Project for Medical Science, Cardiology Division, Yonsei University College of Medicine) ;
  • Kwon, Kihwan (Cardiovascular Research Institute, Brain Korea 21 Project for Medical Science, Cardiology Division, Yonsei University College of Medicine) ;
  • Lim, Soyeon (Cardiovascular Research Institute, Brain Korea 21 Project for Medical Science, Cardiology Division, Yonsei University College of Medicine) ;
  • Kang, Seok-Min (Cardiovascular Research Institute, Brain Korea 21 Project for Medical Science, Cardiology Division, Yonsei University College of Medicine) ;
  • Ko, Young-Guk (Cardiovascular Research Institute, Brain Korea 21 Project for Medical Science, Cardiology Division, Yonsei University College of Medicine) ;
  • Xu, ZhengZhe (Cardiovascular Research Institute, Brain Korea 21 Project for Medical Science, Cardiology Division, Yonsei University College of Medicine) ;
  • Chung, Ji Hyung (Cardiovascular Research Institute, Brain Korea 21 Project for Medical Science, Cardiology Division, Yonsei University College of Medicine) ;
  • Kim, Byung-Soo (Department of Chemical Engineering, Hanyang University) ;
  • Lee, Hakbae (Department of Applied Statistics, Yonsei University) ;
  • Joung, Boyoung (Cardiovascular Research Institute, Brain Korea 21 Project for Medical Science, Cardiology Division, Yonsei University College of Medicine) ;
  • Park, Sungha (Cardiovascular Research Institute, Brain Korea 21 Project for Medical Science, Cardiology Division, Yonsei University College of Medicine) ;
  • Choi, Donghoon (Cardiovascular Research Institute, Brain Korea 21 Project for Medical Science, Cardiology Division, Yonsei University College of Medicine) ;
  • Jang, Yangsoo (Cardiovascular Research Institute, Brain Korea 21 Project for Medical Science, Cardiology Division, Yonsei University College of Medicine) ;
  • Chung, Nam-Sik (Cardiovascular Research Institute, Brain Korea 21 Project for Medical Science, Cardiology Division, Yonsei University College of Medicine) ;
  • Yoo, Kyung-Jong (Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine) ;
  • Hwang, Ki-Chul (Cardiovascular Research Institute, Brain Korea 21 Project for Medical Science, Cardiology Division, Yonsei University College of Medicine)
  • Received : 2005.01.28
  • Accepted : 2005.03.18
  • Published : 2005.06.30

Abstract

Bone marrow mesenchymal stem cells (MSCs) have shown potential for cardiac repair following myocardial injury, but this approach is limited by their poor viability after transplantation. To reduce cell loss after transplantation, we introduced the fibroblast growth factor-2 (FGF-2) gene ex vivo before transplantation. The isolated MSCs produced colonies with a fibroblast-like morphology in 2 weeks; over 95% expressed CD71, and 28% expressed the cardiomyocyte-specific transcription factor, Nkx2.5, as well as ${\alpha}$-skeletal actin, Nkx2.5, and GATA4. In hypoxic culture, the FGF-2-transfected MSCs (FGF-2-MSCs) secreted increased levels of FGF-2 and displayed a threefold increase in viability, as well as increased expression of the anti-apoptotic gene, Bcl2, and reduced DNA laddering. They had functional adrenergic receptors, like cardiomyocytes, and exposure to norepinephrine led to phosphorylation of ERK1/2. Viable cells persisted 4 weeks after implantation of $5.0{\times}10^5$ FGF-2-MSCs into infarcted myocardia. Expression of cardiac troponin T (CTn T) and a voltage-gated $Ca^{2+}$ channel (CaV2.1) increased, and new blood vessels formed. These data suggest that genetic modification of MSCs before transplantation could be useful for treating myocardial infarction and end-stage cardiac failure.

Keywords

Acknowledgement

Supported by : Ministry of Health & Welfare

References

  1. Bianchi, G., Banfi, A., Mastrogiacomo, M., Notaro, R., Luzzatto, L., et al. (2003) Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Exp. Cell Res. 287, 98-105 https://doi.org/10.1016/S0014-4827(03)00138-1
  2. Debiais, F., Lefevre, G., Lemonnier, J., Le Mee, S., Lasmoles, F., et al. (2004) Fibroblast growth factor-2 induces osteoblast survival through a phosphatidylinositol 3-kinase-dependent, -beta-catenin-independent signaling pathway. Exp. Cell Res. 297, 235-246 https://doi.org/10.1016/j.yexcr.2004.03.032
  3. Ho, K. K., Anderson, K. M., Kannel, W. B., Grossman, W., and Levy, D. (1993) Survival after the onset of congestive heart failure in Framingham Heart Study subjects. Circulation 88, 107-115 https://doi.org/10.1161/01.CIR.88.1.107
  4. Houchen, C. W., George, R. J., Sturmoski, M. A., and Cohn, S. M. (1999) FGF-2 enhances intestinal stem cell survival and its expression is induced after radiation injury. Am. J. Physiol. 276, 249-258
  5. Kim, J., Cheon, I. S., Won, Y. J., Na, H. J., Kim, Y. M., et al. (2003) IL-4 inhibits cell cycle progression of human umbilical vein endothelial cells by affecting p53, p21Waf1, cyclin D1, and cyclin E expression. Mol. Cells 16, 92-96
  6. Lee, K. H., Lee, N., Lim, S., Jung, H., Ko, Y. G., et al. (2003) Calreticulin inhibits the MEK1,2-ERK1,2 pathway in alpha 1-adrenergic receptor/Gh-stimulated hypertrophy of neonatal rat cardiomyocytes. J. Steroid Biochem. Mol. Biol. 84, 85-90
  7. Li, R. K., Mickle, D. A., Weisel, R. D., Mohabeer, M. K., Zhang, J., et al. (1997) Natural history of fetal rat cardiomyocytes transplanted into adult rat myocardial scar tissue. Circulation 96, II-179-186
  8. Makino, S., Fukuda, K., Miyoshi, S., Konishi, F., Kodama, H., et al. (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. 103, 697-705 https://doi.org/10.1172/JCI5298
  9. Mangi, A. A., Noiseux, N., Kong, D., He, H., Rezvani, M., et al. (2003) Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat. Med. 9, 1195-1201 https://doi.org/10.1038/nm912
  10. Min, J. Y., Yang, Y., Converso, K. L., Liu, L., Huang, Q., et al. (2002) Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J. Appl. Physiol. 92, 288-296 https://doi.org/10.1063/1.1481962
  11. Murry, C. E., Wiseman, R. W., Schwartz, S. M., and Hauschka, S. D. (1996) Skeletal myoblast transplantation for repair of myocardial necrosis. J. Clin. Invest. 98, 2512-2523 https://doi.org/10.1172/JCI119070
  12. Nugent, M. A. and Iozzo, R. V. (2000) Fibroblast growth factor- 2. Int. J. Biochem. Cell Biol. 32, 15-20
  13. Orlic, D., Kajstura, J., Chimenti, S., Limana, F., Jakoniuk, I., et al. (2001a) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl. Acad. Sci. USA 98, 10344-10349
  14. Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., et al. (2001b) Bone marrow cells regenerate infarcted myocardium. Nature 410, 701-705 https://doi.org/10.1038/35070587
  15. Orlic, D., Hill, J. M., and Arai, A. E. (2002) Stem cells for myocardial regeneration. Circ. Res. 91, 1092-1102 https://doi.org/10.1161/01.RES.0000046045.00846.B0
  16. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147 https://doi.org/10.1126/science.284.5411.143
  17. Prockop, D. J. (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71-74 https://doi.org/10.1126/science.276.5309.71
  18. Reinecke, H., Zhang, M., Bartosek, T., and Murry, C. E. (1999) Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation 100, 193-202 https://doi.org/10.1161/01.CIR.100.2.193
  19. Reinecke, H., MacDonald, G. H., Hauschka, S. D., and Murry, C. E. (2000) Electromechanical coupling between skeletal and cardiac muscle. Implications for infarct repair. J. Cell Biol. 149, 731-740 https://doi.org/10.1083/jcb.149.3.731
  20. Taylor, D. A., Atkins, B. Z., Hungspreugs, P., Jones, T. R., Reedy, M. C., et al. (1998) Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat. Med. 4, 929-933 https://doi.org/10.1038/nm0898-929
  21. Tokuda, H., Kozawa, O., and Uematsu, T. (2000) Basic fibroblast growth factor stimulates vascular endothelial growth factor release in osteoblasts: divergent regulation by p42/p44 mitogen-activated protein kinase and p38 mitogen-activated protein kinase. J. Bone Miner. Res. 15, 2371-2379 https://doi.org/10.1359/jbmr.2000.15.12.2371
  22. Wang, J. S., Shum-Tim, D., Galipeau, J., Chedrawy, E., Eliopoulos, N., et al. (2000) Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantage. J. Thorac. Cardiovasc. Surg. 120, 999-1006 https://doi.org/10.1067/mtc.2000.110250
  23. Watanabe, E. Jr., Smith, D. M., Delcarpio, J. B., Sun, J., Smart, F. W., Jr., et al. (1998) Cardiomyocyte transplantation in a porcine myocardial infarction model, Cell Transplant. Cell Transplant 7, 239-246 https://doi.org/10.1016/S0963-6897(98)00011-6