• 제목/요약/키워드: DNA molecules

검색결과 663건 처리시간 0.02초

Microchip상에서 효율적인 DNA 분석을 위한 반복단위 단백질의 생산 (Production of Repetitive Polypeptides for an Efficient DNA Analysis on a Microchip)

  • 이현진;최석진;서태석;원종인
    • KSBB Journal
    • /
    • 제25권2호
    • /
    • pp.199-204
    • /
    • 2010
  • Drag-tag으로 사용될 반복단위 단백질을 생물학적인 방법을 통해 생산함으로써 수용액 내에서 DNA 분리가 가능함을 확인하였다. 서로 다른 크기를 갖는 두 종류의 반복단위 단백질을 디자인하였고, 이를 발현시킨 뒤 정제하였다. 정제된 반복단위 단백질에 형광 dye를 포함하고 있는 100 base의 DNA를 연결하였고, 이 연결 물질을 모세관 내부가 수용액으로 충진된 microchip 상에서 전기영동 하였다. 그 결과 생물학적으로 생산된 반복단위 단백질이 SNP 분석과 같은 빠르고 효율적인 DNA 분석에 적합한 후보물질로 사용될 수 있음을 확인하였다.

장환형 단일가닥 DNA를 이용한 암세포 성장 억제 유전자 발굴 (Large-Circular Single-stranded Sense and Antisense DNA for Identification of Cancer-Related Genes)

  • 배윤위;문익재;서영배;도경오
    • 한국미생물·생명공학회지
    • /
    • 제38권1호
    • /
    • pp.70-76
    • /
    • 2010
  • The single-stranded large circular (LC)-sense DNA were utilized as probes for DNA chip experiments. The microarray experiment using LC-sense DNA probes found differentially expressed genes in A549 cells as compared to WI38VA13 cells, and microarray data were well-correlated with data acquired from quantitative real-time RT-PCR. A 5K LC-sense DNA microarray was prepared, and the repeated experiments and dye swap test showed consistent expression patterns. Subsequent functional analysis using LC-antisense library of overexpressed genes identified several genes involved in A549 cell growth. These experiments demonstrated proper feature of LC-sense molecules as probe DNA for microarray and the potential utility of the combination of LC-sense microarray and antisense libraries for an effective functional validation of genes.

Differential Localisation of PARP-1 N-Terminal Fragment in PARP-1+/+ and PARP-1-/- Murine Cells

  • Rajiah, Ida Rachel;Skepper, Jeremy
    • Molecules and Cells
    • /
    • 제37권7호
    • /
    • pp.526-531
    • /
    • 2014
  • Human PARP family consists of 17 members of which PARP-1 is a prominent member and plays a key role in DNA repair pathways. It has an N-terminal DNA-binding domain (DBD) encompassing the nuclear localisation signal (NLS), central automodification domain and C-terminal catalytic domain. PARP-1 accounts for majority of poly-(ADP-ribose) polymer synthesis that upon binding to numerous proteins including PARP itself modulates their activity. Reduced PARP-1 activity in ageing human samples and its deficiency leading to telomere shortening has been reported. Hence for cell survival, maintenance of genomic integrity and longevity presence of intact PARP-1 in the nucleus is paramount. Although localisation of full-length and truncated PARP-1 in PARP-1 proficient cells is well documented, subcellular distribution of PARP-1 fragments in the absence of endogenous PARP-1 is not known. Here we report the differential localisation of PARP-1 Nterminal fragment encompassing NLS in PARP-$1^{+/+}$ and PARP-$1^{-/-}$ mouse embryo fibroblasts by live imaging of cells transiently expressing EGFP tagged fragment. In PARP-$1^{+/+}$ cells the fragment localises to the nuclei presenting a granular pattern. Furthermore, it is densely packaged in the midsections of the nucleus. In contrast, the fragment localises exclusively to the cytoplasm in PARP-$1^{-/-}$ cells. Flourescence intensity analysis further confirmed this observation indicating that the N-terminal fragment requires endogenous PARP-1 for its nuclear transport. Our study illustrates the trafficking role of PARP-1 independently of its enzymatic activity and highlights the possibility that full-length PARP-1 may play a key role in the nuclear transport of its siblings and other molecules.

Mode of Action on EcoRI Restriction Endonuclease: EcoRI and EcoRI Variant N199H have Active Monomeric Forms

  • Kim, Jae-Jong;Koh, Suk-Hoon;Kim, Joong-Su;Lee, Dae-Sil
    • BMB Reports
    • /
    • 제31권2호
    • /
    • pp.149-155
    • /
    • 1998
  • The N199H variant of the EcoRI endonuclease has about twice the catalytic activity of the wild-type. A comparison of their biochemical characteristics, using synthetic oligonucleotides 5'-dAAAACTTAAGAAAAAAAAAAA-3' (KA) and 5'-dTTTTTGAATTCTTTTTTTTTT-3' (KT), helps to define the cleavage reaction pathway of these enzymes. Both EcoRI and EcoRI variant N199H were found to cleave singlestranded KA or KT about three times faster than the double-stranded forms, although the KT oligonucleotide was more susceptible. Using the ssDNA substrate in kinetic analyses, lower $K_m$ values were obtained for the N199H variant than for the wild-type at low (50 mM), as well as high (200 mM), sodium chloride concentrations. This difference between the endonucleases is attributed to a grealter accessibility for tbe substrate by the variant, and also a higher affinity for the DNA backbone. It also appears that the relative activities of the two enzymes, particularly at high ionic strength, are proportional to their populations in the monomeric enzyme form. That is, according to gel filtration data, half of the N199H molecules exist as monomers in 200 mM NaCl, whereas those of the wild-type are mainly dimeric. Consequently, the Asp199 residue of the EcoRI endonuclease may be implicated in the protein-protein interaction leading to dimerization, as well as in coupling to DNA substrates. In summary, it is proposed that active monomeric endonuclease molecules, derived from the dimeric enzyme, recognize and form a complex with a single stranded form of the DNA substrate, which then undergoes nucleophilic substitution and cleavage.

  • PDF

DNA microarray analysis of gene expression of MC3T3-E1 osteoblast cell cultured on anodized- or machined titanium surface

  • Park, Ju-Mi;Jeon, Hye-Ran;Pang, Eun-Kyoung;Kim, Myung-Rae;Kang, Na-Ra
    • Journal of Periodontal and Implant Science
    • /
    • 제38권sup2호
    • /
    • pp.299-308
    • /
    • 2008
  • Purpose: The aim of this study was to evaluate adhesion and gene expression of the MC3T3-E1 cells cultured on machined titanium surface (MS) and anodized titanium surface (AS) using MTT test, Scanning electron micrograph and cDNA microarray. Materials and Methods: The MTT test assay was used for examining the proliferation of MC3T3-E1 cells, osteoblast like cells from Rat calvaria, on MS and AS for 24 hours and 48 hours. Cell cultures were incubated for 24 hours to evaluate the influence of the substrate geometry on both surfaces using a Scanning Electron Micrograph (SEM). The cDNA microarray Agilent Rat 22K chip was used to monitor expressions of genes. Results: After 24 hours of adhesion, the cell density on AS was higher than MS (p < 0.05). After 48 hours the cell density on both titanium surfaces were similar (p > 0.05). AS had the irregular, rough and porous surface texture. After 48 hours incubation of the MC3T3-E1 cells, connective tissue growth factor (CTGF) was up-regulated on AS than MS (more than 2 fold) and the insulin-like growth factor 1 receptor was down-regulated (more than 2 fold) on AS than MS. Conclusion: Microarray assay at 48 hours after culturing the cells on both surfaces revealed that osteoinductive molecules appeared more prominent on AS, whereas the adhesion molecules on the biomaterial were higher on MS than AS, which will affect the phenotype of the plated cells depending on the surface morphology.

DNA 코딩과 진화연산을 이용한 함수의 최적점 탐색방법 (Global Optimum Searching Technique Using DNA Coding and Evolutionary Computing)

  • 백동화;강환일;김갑일;한승수
    • 한국지능시스템학회논문지
    • /
    • 제11권6호
    • /
    • pp.538-542
    • /
    • 2001
  • DNA computing 은 Adleman 실험 이후에 많은 여러 가지 최적화 문제에 적용되어 왔다. DNA computing의 장점은 스트링의 길이가 가변적이고 4가지 염기를 이용하기 때문에 복잡한 문제에 전역 최적점을 찾는데 기존의 다른 방법보다는 효율적이라는것이다. 본 논문에서는 이진 스트링의 개체 지단 위에서 모의진화를 일으켜 효율적으로 최적 해를 탐색하는 GA(Genetic Algorithms)와 생체 분자와 DNA를 계산의 도구 및 정보 저장도구로 사용하여 A(Adenine). C(Cytosine), G(Guanine), T(Thymine)등의 4가지 염기를 사용하는 DNA 코딩방법을 이용하여multi-modal 함수의 전역 최적점을 탐색하는 문제에서의 각각의 성능을 조사하였다. Selection, crossover, mutation등의 GA연산자를 DNA를 코딩에 동일하게 적용하였으며 최적의 해를 탐색하는데 걸리는 시간과 찾아낸 최적해의 값을 평가한다.을 평가한다.

  • PDF

Oxidative DNA Damage from Nanoparticle Exposure and Its Application to Workers' Health: A Literature Review

  • Rim, Kyung-Taek;Song, Se-Wook;Kim, Hyeon-Yeong
    • Safety and Health at Work
    • /
    • 제4권4호
    • /
    • pp.177-186
    • /
    • 2013
  • The use of nanoparticles (NPs) in industry is increasing, bringing with it a number of adverse health effects on workers. Like other chemical carcinogens, NPs can cause cancer via oxidative DNA damage. Of all the molecules vulnerable to oxidative modification by NPs, DNA has received the greatest attention, and biomarkers of exposure and effect are nearing validation. This review concentrates on studies published between 2000 and 2012 that attempted to detect oxidative DNA damage in humans, laboratory animals, and cell lines. It is important to review these studies to improve the current understanding of the oxidative DNA damage caused by NP exposure in the workplace. In addition to examining studies on oxidative damage, this review briefly describes NPs, giving some examples of their adverse effects, and reviews occupational exposure assessments and approaches to minimizing exposure (e.g., personal protective equipment and engineering controls such as fume hoods). Current recommendations to minimize exposure are largely based on common sense, analogy to ultrafine material toxicity, and general health and safety recommendations.

Editing of Genomic TNFSF9 by CRISPR-Cas9 Can Be Followed by Re-Editing of Its Transcript

  • Lee, Hyeon-Woo
    • Molecules and Cells
    • /
    • 제41권10호
    • /
    • pp.917-922
    • /
    • 2018
  • The CRISPR-Cas system is a well-established RNA-guided DNA editing technique widely used to modify genomic DNA sequences. I used the CRISPR-Cas9 system to change the second and third nucleotides of the triplet $T{\underline{CT}}$ of human TNSFSF9 in HepG2 cells to $T{\underline{AG}}$ to create an amber stop codon. The $T{\underline{CT}}$ triplet is the codon for Ser at the $172^{nd}$ position of TNSFSF9. The two substituted nucleotides, AG, were confirmed by DNA sequencing of the PCR product followed by PCR amplification of the genomic TNFSF9 gene. Interestingly, sequencing of the cDNA of transcripts of the edited TNFSF9 gene revealed that the $T{\underline{AG}}$ had been re-edited to the wild type triplet $T{\underline{CT}}$, and 1 or 2 bases just before the triplet had been deleted. These observations indicate that CRISPR-Cas9-mediated editing of bases in target genomic DNA can be followed by spontaneous re-editing (correcting) of the bases during transcription.

Identification of Genes Suitable for DNA Barcoding of Morphologically Indistinguishable Korean Halichondriidae Sponges

  • Park, Mi-Hyun;Sim, Chung-Ja;Baek, Jina;Min, Gi-Sik
    • Molecules and Cells
    • /
    • 제23권2호
    • /
    • pp.220-227
    • /
    • 2007
  • The development of suitable genetic markers would be useful for defining species and delineating the species boundaries of morphologically indistinguishable sponges. In this study, genetic variation in the sequences of nuclear rDNA and the mitochondrial cytochrome c oxidase subunit 1 and 3 (CO1 and CO3) regions were compared in morphologically indistinguishable Korean Halichondriidae sponges in order to determine the most suitable species-specific molecular marker region. The maximal congeneric nucleotide divergences of Halichondriidae sponges in CO1 and CO3 are similar to those found among anthozoan cnidarians, but they are 2- to 8-fold lower than those found among genera of other triploblastic metazoans. Ribosomal internal transcribed spacer regions (ITS: ITS1 + ITS2) showed higher congeneric variation (17.28% in ITS1 and 10.29% in ITS2) than those of CO1 and CO3. Use of the guidelines for species thresholds suggested in the recent literature indicates that the mtDNA regions are not appropriate for use as species-specific DNA markers for the Halichondriidae sponges, whereas the rDNA ITS regions are suitable because ITS exhibits a low level of intraspecific variation and a relatively high level of interspecific variation. In addition, to test the reliability of the ITS regions for identifying Halichondriidae sponges by PCR, a species-specific multiplex PCR primer set was developed.

AFM 캔틸레버를 이용한 i-motif DNA의 구조 변화에 미치는 화학적 환경에 대한 연구 (Study on the chemical environment for conformational change of i-motif DNA by atomic force microscopy cantilever)

  • 정휘헌;박진성;양재문;이상우;엄길호;권태윤;윤대성
    • 센서학회지
    • /
    • 제19권3호
    • /
    • pp.214-220
    • /
    • 2010
  • Three-dimensional(3D) structure of specific DNA can be changed between two conformations under an external environmental transition such as pH and salt concentration variations. We have experimentally observed the conformational transitions of i-motif DNA using AFM cantilever bioassay. It is shown that pH change of a solvent induces the bending defleciton change of a cantilever functionalized by i-motif DNA. This indicates that cantilever bioassay enables the label-free detection of DNA structural changes upon pH change. It is implied that cantilever bioassay can be a de novo route to quantitatively understand the conformational transitions of biological molecules under environmental changes.