Browse > Article
http://dx.doi.org/10.14348/molcells.2018.0209

Editing of Genomic TNFSF9 by CRISPR-Cas9 Can Be Followed by Re-Editing of Its Transcript  

Lee, Hyeon-Woo (Institute of Oral Biology, School of Dentistry, Graduate School, Kyung Hee University)
Abstract
The CRISPR-Cas system is a well-established RNA-guided DNA editing technique widely used to modify genomic DNA sequences. I used the CRISPR-Cas9 system to change the second and third nucleotides of the triplet $T{\underline{CT}}$ of human TNSFSF9 in HepG2 cells to $T{\underline{AG}}$ to create an amber stop codon. The $T{\underline{CT}}$ triplet is the codon for Ser at the $172^{nd}$ position of TNSFSF9. The two substituted nucleotides, AG, were confirmed by DNA sequencing of the PCR product followed by PCR amplification of the genomic TNFSF9 gene. Interestingly, sequencing of the cDNA of transcripts of the edited TNFSF9 gene revealed that the $T{\underline{AG}}$ had been re-edited to the wild type triplet $T{\underline{CT}}$, and 1 or 2 bases just before the triplet had been deleted. These observations indicate that CRISPR-Cas9-mediated editing of bases in target genomic DNA can be followed by spontaneous re-editing (correcting) of the bases during transcription.
Keywords
CRISPR-Cas9; genomic DNA editing; RNA editing; TNFSF9;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, E.C., Moon, J.H., Kang, S.W., Kwon, B., and Lee, H.W. (2015). TMEM126A, a CD137 ligand binding protein, couples with the TLR4 signal transduction pathway in macrophages. Mol. Immunol. 64, 244-251.   DOI
2 Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., and Liu, D.R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424.   DOI
3 Komor, A.C., Badran, A.H., and David R.L. (2017). CRISPR-Based technologies for the manipulation of eukaryotic genomes. Cell 168, 20-36.   DOI
4 Koo, T., Lee, J., and Kim J.S. (2015). Measuring and reducing Off-Target activities of programmable nucleases including CRISPR-Cas9. Mol. Cells 38, 475-481.   DOI
5 Lee, H.W., Park, S.J., Choi, B.K., Kim, H.H., Nam, K.O., and Kwon, B.S. (2002). 4-1BB promotes the survival of CD8(+) T lymphocytes by increasing expression of Bcl-x(L) and BfI-1. J. Immunol. 169, 4882-4888.   DOI
6 Lee, H.S., Guo, J., Lemke, E.A., Dimla, R.D., and Schultz, P.G. (2009). Genetic incorporation of a small, environmentally sensitive, fluorescent probe into proteins in Saccharomyces cerevisiae. J. Am. Chem. Soc. 131, 12921-12923.   DOI
7 Li, T., Huang, S., Jiang, W.Z., Wright, D., Spalding, M.H., Weeks, D.P., and Yang, B. (2011a). TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. 39, 359-372.   DOI
8 Li, T., Huang, S., Zhao, X., Wright, D.A., Carpenter, S., Spalding, M.H., Weeks, D.P., and Yang, B. (2011b). Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. 39, 6315-6325.   DOI
9 Lin, F.L., Sperle, K., and Sternberg, N. (1985). Recombination in mouse L cells between DNA introduced into cells and homologous chromosomal sequences. Proc. Natl. Acad. Sci. USA 82, 1391-1395.   DOI
10 Baltimore, D., Berg, P., Botchan, M., Carroll, D., Charo, R.A., Church, G., Corn, J.E., Daley, G.Q., Doudna, J.A., Fenner, M., et al. (2015). Biotechnology. A prudent path forward for genomic engineering and germline gene modification. Science 348, 36-38.   DOI
11 Bibikova, M., Golic, M., Golic, K.G., and Carroll, D. (2002). Targeted chromosomal cleavage and mutagenesis in drosophila using zincfinger nucleases. Genetics 161, 1169-1175.
12 Bibikova, M., Beumer, K., Trautman, J.K., and Carroll, D. (2003). Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764.   DOI
13 Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A., and Bonas, U. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509-1512.   DOI
14 Choulika, A., Perrin, A., Dujon, B., and Nicolas, J.F. (1995). Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol. Cell. Biol. 15, 1968-1973.   DOI
15 Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., and Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.   DOI
16 Cox, D.B.T., Gootenberg, J.S., Abudayyeh, O.O., Franklin, B., Kellner, M.J., Joung, J., Zhang, F. (2017). RNA editing with CRISPR-Cas13. Science 358, 1019-1027.   DOI
17 Davis, K.M., Pattanayak, V., Thompson, D.B., Zuris, J.A., and Liu, D.R. (2015). Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat. Chem. Biol. 11, 316-318.   DOI
18 Shao, Z., and Schwarz, H. (2011). CD137 ligand, a member of the tumor necrosis factor family, regulates immune responses via reverse signal transduction. J. Leukocyte Biol. 89, 21-29.   DOI
19 Mali, P., Aach, J., Stranges, P.B., Esvelt, K.M., Moosburner, M., Kosuri, S., Yang, L., and Church, G.M. (2013). CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833-838.   DOI
20 Ran, F.A., Hsu, P.D., Lin, C.Y., Gootenberg, J.S., Konermann, S., Trevino, A.E., Scott, D.A., Inoue, A., Matoba, S., Zhang, Y., et al. (2013). Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380-1389.   DOI
21 Summerer, D., Chen, S., Wu, N., Deiters, A., Chin, J.W., and Schultz, P.G. (2006). A genetically encoded fluorescent amino acid. Proc. Natl. Acad. Sci. USA 103, 9785-9789.   DOI
22 Hsu, P.D., Lander, E.S., and Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278.   DOI
23 Wang, C., Lin, G.H., McPherson, A.J., and Watts, T.H. (2009). Immune regulation by 4-1BB and 4-1BBL: complexities and challenges. Immunol. Rev. 229, 192-215.   DOI
24 Deveau, H., Barrangou, R., Garneau, J.E., Labonte, J., Fremaux, C., Boyaval, P., Romero, D.A., Horvath, P., and Moineau, S. (2008). Phage response to CRISPR-encoded resistance in streptococcus thermophilus. J. Bacteriol. 190, 1390-1400.   DOI
25 Doudna, J.A., and Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096.   DOI
26 Garneau, J.E., Dupuis, M.E., Villion, M., Romero, D.A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadan, A.H., and Moineau. S. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67-71.   DOI
27 Gasiunas, G., Barrangou, R., Horvath, P., and Siksnys, V. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA 109, E2579-E2586.   DOI
28 Jasin. M. (1996). Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet. 12, 224-228.   DOI
29 Jeggo, P.A. (1998). DNA breakage and repair. Adv. Genet. 38, 185-218.
30 Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.   DOI
31 Kable, M.L., Seiwert, S.D., Heidmann, S., and Stuart, K. (1996). RNA editing: a mechanism for gRNA-specified uridylate insertion into precursor mRNA. Science 273, 1189-1195.   DOI
32 Kim, D.K., Lee, S.C., and Lee, H.W. (2009). CD137 ligand-mediated reverse signals increase cell viability and cytokine expression in murine myeloid cells: Involvement of mTOR/p70S6 kinase and Akt. Eur. J. Immunol. 39, 2617-2628.   DOI