Browse > Article
http://dx.doi.org/10.14348/molcells.2014.0077

Differential Localisation of PARP-1 N-Terminal Fragment in PARP-1+/+ and PARP-1-/- Murine Cells  

Rajiah, Ida Rachel (Department of Physiology, Development and Neuroscience, University of Cambridge)
Skepper, Jeremy (Department of Physiology, Development and Neuroscience, University of Cambridge)
Abstract
Human PARP family consists of 17 members of which PARP-1 is a prominent member and plays a key role in DNA repair pathways. It has an N-terminal DNA-binding domain (DBD) encompassing the nuclear localisation signal (NLS), central automodification domain and C-terminal catalytic domain. PARP-1 accounts for majority of poly-(ADP-ribose) polymer synthesis that upon binding to numerous proteins including PARP itself modulates their activity. Reduced PARP-1 activity in ageing human samples and its deficiency leading to telomere shortening has been reported. Hence for cell survival, maintenance of genomic integrity and longevity presence of intact PARP-1 in the nucleus is paramount. Although localisation of full-length and truncated PARP-1 in PARP-1 proficient cells is well documented, subcellular distribution of PARP-1 fragments in the absence of endogenous PARP-1 is not known. Here we report the differential localisation of PARP-1 Nterminal fragment encompassing NLS in PARP-$1^{+/+}$ and PARP-$1^{-/-}$ mouse embryo fibroblasts by live imaging of cells transiently expressing EGFP tagged fragment. In PARP-$1^{+/+}$ cells the fragment localises to the nuclei presenting a granular pattern. Furthermore, it is densely packaged in the midsections of the nucleus. In contrast, the fragment localises exclusively to the cytoplasm in PARP-$1^{-/-}$ cells. Flourescence intensity analysis further confirmed this observation indicating that the N-terminal fragment requires endogenous PARP-1 for its nuclear transport. Our study illustrates the trafficking role of PARP-1 independently of its enzymatic activity and highlights the possibility that full-length PARP-1 may play a key role in the nuclear transport of its siblings and other molecules.
Keywords
DNA binding domain; DNA repair; fluorescence imaging; nuclear transport; Poly(ADP-ribose);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Barnes, DE, and Lindahl, T (2004). Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet. 37, 445-476.
2 Bjelland, S, and Seeberg, E (2003). Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutat Res. 531, 37-80.   DOI   ScienceOn
3 Burkle, A (2006). DNA repair and PARP in aging. Free Radic Res. 40, 1295-1302.   DOI   ScienceOn
4 Cai, CX, Birk, DE, and Linsenmayer, TF (1998). Nuclear ferritin protects DNA from UV damage in corneal epithelial cells. Mol Biol Cell. 9, 1037-1051.   DOI
5 Caldecott, KW (2008). Single-strand break repair and genetic disease. Nat Rev Genet. 9, 619-631.
6 Chevanne, M, Calia, C, Zampieri, M, Cecchinelli, B, Caldini, R, Monti, D, Bucci, L, Franceschi, C, and Caiafa, P (2007). Oxidative DNA damage repair and PARP 1 and PARP 2 expression in Epstein-Barr virus-immortalized B lymphocyte cells from young subjects, old subjects, and centenarians. Rejuvenation Res. 10, 191-203.   DOI   ScienceOn
7 Dizdaroglu, M, Jaruga, P, Birincioglu, M, and Rodriguez, H (2002). Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Bio Med. 32, 1102-1115.   DOI   ScienceOn
8 Krishnakumar, R, and Kraus, W (2010). The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell. 39, 8-24.   DOI   ScienceOn
9 Gradwohl, G, Menissier de Murcia, JM, Molinete, M, Simonin, F, Koken, M, Hoeijmakers, JH, and de Murcia, G (1990). The second zinc-finger domain of poly (ADP-ribose) polymerase determines specificity for single-stranded breaks in DNA. Proc Natl Acad Sci USA. 87, 2990-2994.   DOI   ScienceOn
10 Kameshita, I, Matsuda, Z, Taniguchi, T, and Shizuta, Y (1984). Poly (ADP-ribose) synthetase. Separation and identification of three proteolytic fragments as the substrate-binding domain, the DNA-binding domain, and the automodification domain. J Biol Chem. 259, 4770-4776.
11 Kun, E, Zimber, PH, Chang, AC, Puschendorf, B, and Grunicke, H (1975). Macromolecular enzymatic product of $NAD^{+}$ in liver mitochondria. Proc Natl Acad Sci USA. 72, 1436-1440.   DOI   ScienceOn
12 Lamarre, D, Talbot, B, Leduc, Y, Muller, S, and Poirier, G (1986). Production and characterization of monoclonal antibodies specific for the functional domains of poly (ADP-ribose) polymerase. Biochem Cell Biol. 64, 368-376.   DOI   ScienceOn
13 Alkhateeb, AA, and Connor, JR (2010). Nuclear ferritin: a new role for ferritin in cell biology. Biochem Biophys Acta. 1800, 793-797.   DOI   ScienceOn
14 Langelier, MF, Planck, JL, Roy, S, and Pascal, JM (2012). Structural basis for DNA damage-dependent poly(ADP-ribosyl) ation by human PARP-1. Science. 336, 728-732.   DOI
15 Lazebnik, YA, Kaufmann, SH, Desnoyers, S, Poirier, GG, and Eamshaw, WC (1994). Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346-347.   DOI   ScienceOn
16 Maynard, S, Schurman, SH, Harboe, C, de Souza-Pinto, NC, and Bohr, VA (2009). Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis. 30, 2-10.
17 Lian, Z, and Di Cristofano, A (2005). Class reunion: PTEN joins the nuclear crew. Oncogene. 24, 7394-7400.   DOI   ScienceOn
18 Lord, CJ, and Ashworth, A (2012). The DNA damage response and cancer therapy. Nature. 481, 287-294.   DOI   ScienceOn
19 Luo, X, and Kraus, WL (2012). On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Gene Dev. 26, 417-432.   DOI   ScienceOn
20 Mendoza-Alvarez, H, and Alvarez-Gonzalez, R (2004). The 40 kDa carboxy-terminal domain of poly (ADP-ribose) polymerase-1 forms catalytically competent homo- and heterodimers in the absence of DNA. J Mol Biol. 336, 105-114.   DOI   ScienceOn
21 Molinete, M, Vermeulen, W, Burkle, A, Menissier-de Murcia, J, Kupper, JH, Hoeijmakers, JH, and de Murcia, G (1993). Overproduction of the poly (ADP-ribose) polymerase DNA-binding domain blocks alkylation-induced DNA repair synthesis in mammalian cells. EMBO J. 12, 2109-2117.
22 Mosgoeller, W, Steiner, M, Hozak, P, Penner, E, and Wesierska-Gadek, J (1996). Nuclear architecture and ultrastructural distribution of poly (ADP-ribosyl) transferase, a multifunctional enzyme. J Cell Sci. 109, 409-418.
23 Muiras, ML, Muller, M, Schachter, F, and Burkle, A (1998). Increased poly (ADP-ribose) polymerase activity in lymphoblastoid cell lines from centenarians. J Mol Med. 76, 346-354.   DOI
24 Patel, AG, Flatten, KS, Schneider, PA, Dai, NT, McDonald, JS, Poirier, GG, and Kaufmann, SH (2012). Enhanced killing of cancer cells by poly(ADP-ribose) polymerase inhibitors and topoisomerase I inhibitors reflects poisoning of both enzymes. J Biol Chem. 287, 4198-4210.   DOI   ScienceOn
25 Zerfaoui, M, Errami, Y, Naura, AS, Suzuki, Y, Kim, H, Ju, J, Liu, T, Hans, CP, Kim, JG, and Abd Elmageed, ZY (2010). Poly (ADP-ribose) polymerase-1 is a determining factor in Crm1-mediated nuclear export and retention of p65 NF-kappa B upon TLR4 stimulation. J Immunol. 185, 1894-1902.   DOI
26 Nicholson, DW, Ali, A, Thornberry, NA, Vaillancourt, JP, Ding, CK, Gallant, M, Gareau, Y, Griffin, PR, Labelle, M, and Lazebnik, YA (1995). Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 376, 37-43.   DOI   ScienceOn
27 Ogata, N, Ueda, K, Kawaichi, M, and Hayaishi, O (1981). Poly (ADP-ribose) synthetase, a main acceptor of poly(ADP-ribose) in isolated nuclei. J Biol Chem. 256, 4135-4137.
28 Roberts, JH, Stard, P, Giri, CP, and Smulson, M (1975). Cytoplasmic poly(ADP-ribose) polymerase during the HeLa cell cycle. Arch Biochem Biophys. 171, 305-315.   DOI   ScienceOn
29 Rosenthal, DS, Ding, R, Simbulan-Rosenthal, CMG, Cherney, B, Vanek, P, and Smulson, ME (1997). Intact cell evidence of the early synthesis, and subsequent late apopain-mediated suppression, of polyl (ADP-ribose) during apoptosis. Exp Cell Res. 232, 313-321.   DOI   ScienceOn
30 Schreiber, V, Dantzer, F, Ame, JC, and de Murcia, G (2006). Poly (ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol. 7, 517-528.   DOI   ScienceOn
31 Serrano, M, and Blasco, MA (2007). Cancer and ageing: convergent and divergent mechanisms. Nat Rev Mol Cell Biol. 8, 715-722.   DOI   ScienceOn
32 Svilar, D, Goellner, EM, Almeida, KH, and Sobol, RW (2011). Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage. Antioxid Redox Signal. 14, 2491-2507.   DOI   ScienceOn
33 Soldani, C, and Scovassi, AI (2002). Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis. 7, 321-328.   DOI   ScienceOn
34 Tewari, M, Quan, LT, O'Rourke, K, Desnoyers, S, Zeng, Z, Beidler, DR, Poirier, GG, Salvesen, GS, and Dixit, VM (1995). Yama/CPP32b. a mammalian homolog of CED-3, is a crmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell. 81, 801-809.   DOI   ScienceOn
35 Thompson, KJ, Fried, MG, Ye, Z, Boyer, P, and Connor, JR (2002). Regulation, mechanisms and proposed function of ferritin translocation to cell nuclei. J Cell Sci. 115, 2165-2177.
36 Tong, WM, Cortes, U, and Wang, ZQ (2001). Poly(ADP-ribose) polymerase: a guardian angel protecting the genome and suppressing tumorigenesis. Biochim Biophys Acta. 1552, 27-37.
37 Yung, TM, Sato, S, and Satoh, MS (2004). Poly(ADP-ribosyl) ation as a DNA damage-induced post-translational modification regulating poly(ADP-ribose) polymerase-1-topoisomerase I interaction. J Biol Chem. 279, 39686-39696.   DOI   ScienceOn
38 de Murcia, G, Schreiber, V, Molinete, M, Saulier, B, Poch, O, Masson, M, Niedergang, C, and Menissier de Murcia, J (1994). Structure and function of poly (ADP-ribose) polymerase. Mol Cell Biochem. 138, 15-24.   DOI
39 Rajiah, IR (2013). PARP-1 N-terminal fragment down-regulates endogenous PARP-1 expression and activity and sensitises cells to oxidative stress. J Cell Sci Ther. 4, 1-6.