• Title/Summary/Keyword: DNA methyltransferase 1

Search Result 80, Processing Time 0.027 seconds

Identification of a Sequence Containing Methylated Cytidine in Corynebacterium glutamicum and Brevibacterium flavum Using Bisulfite DNA Derivatization and Sequencing

  • Jang, Ki-Hyo;Chambers, Paul J.;Britz, Margaret L.
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.819-824
    • /
    • 2001
  • The principal DNA modification systems of the amino-acid-producing bacteria Corynebacterium glutamicum AS019, Brevibacterium flavum BF4, and B. lactofermentum BL1 was investigated using two approaches; digestion of plasmid DNA isolated from these species TseI and Fnu4HI, and sequence analysis of the putative methyltransferase target sites following the derivatization of DNA using metabisulfite treatment. The C. glutamicum and B. flavum strains showed similar digestion patterns to the two enzymes, indicating that the target for cytidine methyltransferase recognizes 5'-GCSGC-3'(where S is either G or C). Mapping the methylated cytidine sites by bisulfite derivatization, followed by PCR amplification and sequencing, was only possible when the protocol included an additional step eliminating any underivatized DNA after PCR amplification, thereby indicating that the derivatization was not $100\%$ efficient. This may have been due to the high G0C content of this genus. It was confirmed that C. glutamicum AS019 and B. flavum BF4 methylated the cytidine in the $Gm^5CCGC$ sequences, yet there were no similar patterns of methylation in B. lactofermentum, which was consistent with the distinctive degradation pattern seen for the above enzymes. These findings demonstrate the successful application of a modified bisulfite derivatization method with the Corynebacterium species for determining methylation patterns, and showed that different species in the geneus contain distinctive restriction and modification systems.

  • PDF

Identification and Characterization of Protein Arginine Methyltransferase 1 in Acanthamoeba castellanii

  • Moon, Eun-Kyung;Kong, Hyun-Hee;Hong, Yeonchul;Lee, Hae-Ahm;Quan, Fu-Shi
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.2
    • /
    • pp.109-114
    • /
    • 2017
  • Protein arginine methyltransferase (PRMT) is an important epigenetic regulator in eukaryotic cells. During encystation, an essential process for Acanthamoeba survival, the expression of a lot of genes involved in the encystation process has to be regulated in order to be induced or inhibited. However, the regulation mechanism of these genes is yet unknown. In this study, the full-length 1,059 bp cDNA sequence of Acanthamoeba castellanii PRMT1 (AcPRMT1) was cloned for the first time. The AcPRMT1 protein comprised of 352 amino acids with a SAM-dependent methyltransferase PRMT-type domain. The expression level of AcPRMT1 was highly increased during encystation of A. castellanii. The EGFP-AcPRMT1 fusion protein was distributed over the cytoplasm, but it was mainly localized in the nucleus of Acanthamoeba. Knock down of AcPRMT1 by synthetic siRNA with a complementary sequence failed to form mature cysts. These findings suggested that AcPRMT1 plays a critical role in the regulation of encystation of A. castellanii. The target gene of AcPRMT1 regulation and the detailed mechanisms need to be investigated by further studies.

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone Induces Retinoic Acid Receptor β Hypermethylation through DNA Methyltransferase 1 Accumulation in Esophageal Squamous Epithelial Cells

  • Wang, Jing;Zhao, Shu-Lei;Li, Yan;Meng, Mei;Qin, Cheng-Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2207-2212
    • /
    • 2012
  • Overexpression of DNA methyltransferase 1 (DNMT1) has been detected in many cancers. Tobacco exposure is known to induce genetic and epigenetic changes in the pathogenesis of malignancy. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is an important carcinogen present in tobacco smoke; however the detailed molecular mechanism of how NNK induces esophageal carcinogenesis is still unclear. We found that DNMT1 was overexpressed in ESCC tissues compared with paired non-cancerous tissues, the overexpression being correlated with smoking status and low expression of $RAR{\beta}$. The latter could be upregulated by NNK treatment in Het-1A cells, and the increased DNMT1 expression level reflected promoter hypermethylation and downregulation of retinoic acid receptor ${\beta}$($RAR{\beta}$). RNA interference mediated knockdown of DNMT1 resulted in promoter demethylation and upregulation of $RAR{\beta}$ in KYSE30 and TE-1 cells. 3-(4,5-Dimethyl-thiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometric analysis demonstrated that NNK treatment in Het-1A cells could enhance cell proliferation and inhibit cell apoptosis in a dose-dependent manner. In conclusion, DNMT1 overexpression is correlated with smoking status and low expression of $RAR{\beta}$ in esophageal SCC patients. NNK could induce $RAR{\beta}$ promoter hypermethylation through upregulation of DNMT1 in esophageal squamous epithelial cells, finally leading to enhancement of cell proliferation and inhibition of apoptosis.

Sperm chromatin and DNA integrity, methyltransferase mRNA levels, and global DNA methylation in oligoasthenoteratozoospermia

  • Rahiminia, Tahereh;Yazd, Ehsan Farashahi;Fesahat, Farzaneh;Moein, Mohammad Reza;Mirjalili, Ali Mohammad;Talebi, Ali Reza
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.45 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • Objective: To investigate sperm chromatin/DNA integrity, global DNA methylation, and DNMT mRNA transcription in men with oligoasthenoteratozoospermia (OAT) compared with normozoospermic men. Methods: Semen samples from 32 OAT patients who comprised the case group and 32 normozoospermic men who comprised the control group were isolated and purified using a standard gradient isolation procedure according to World Health Organization criteria. DNMT1, DNMT3A, and DNMT3B transcripts were then compared between groups using real-time quantitative reverse-transcription polymerase chain reaction. Global DNA methylation in sperm was determined by an enzyme-linked immunosorbent assay. Protamine deficiency and the proportion of apoptotic spermatozoa were evaluated using chromomycin A3 (CMA3), aniline blue (AB), and toluidine blue (TB) staining, as well as the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The p-values < 0.05 were considered to indicate statistical significance. Results: Significantly higher proportions of AB+, TB+, CMA3+, and TUNEL+ spermatozoa, as well as DNMT3A and DNMT3B transcription, were found in the OAT group. Positive correlations were detected between sperm parameters, DNA/chromatin damage, and DNMT3A and DNMT3B transcripts. Global DNA methylation was significantly higher in the OAT patients and had a significant correlation with abnormal results of all sperm chromatin integrity tests, but was not associated with DNMT1, DNMT3A, or DNMT3B expression. Conclusion: Oligoasthenoteratozoospermic men showed abnormal sperm parameters, abnormal chromatin/DNA integrity, and a higher global DNA methylation rate, as well as overexpression of DNMT mRNA.

Floral Nectary-specific Gene NTR1 Encodes a Jasmonic Acid Carboxyl Methyltransferase

  • Seo, Hak Soo;Song, Jong Tae;Koo, Yeon Jong;Jung, Choonkyun;Yeu, Song Yion;Kim, Minkyun;Song, Sang Ik;Lee, Jong Seob;Hwang, Ingyu;Cheong, Jong-Joo;Choi, Yang Do
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.3
    • /
    • pp.119-124
    • /
    • 2001
  • NTR1 gene of Brassica campestris L. ssp. perkinensis encodes a floral nectary-specific methyltransferase. In this study, the NTR1 cDNA was expressed in E. coli to examine the enzymatic characteristics of the protein product. The GST-NTR1 fusion protein was purified to near homogeneity, showing that the size of NTR1 was 44 kDa. The protein reacted specifically with jasmonic acid (JA), consuming methyl group from S-adenosyl-L-methionine (SAM). GC-MS analysis revealed that the compound produced was authentic methyl jasmonate (MeJA), suggesting that NTR1 is an S-adenosyl-L-methionine: jasmonic acid carboxyl methyltransferase. Km values of NTR1 for JA and SAM were 38.0 and $6.4{\mu}M$, respectively. Optimal activity of the NTR1 was observed at $20^{\circ}C$, pH 7.5, in the presence of 100-150 mM KCl. Thus, kinetic properties, thermal characteristics, optimal pH, and ion-dependency of the NTR1 activity were almost identical to those of Arabidopsis JA methyltransferase JMT, indicating that these two proteins are orthologues of each other.

  • PDF

EBP1 regulates Suv39H1 stability via the ubiquitin-proteasome system in neural development

  • Kim, Byeong-Seong;Ko, Hyo Rim;Hwang, Inwoo;Cho, Sung-Woo;Ahn, Jee-Yin
    • BMB Reports
    • /
    • v.54 no.8
    • /
    • pp.413-418
    • /
    • 2021
  • ErbB3-binding protein 1 (EBP1) is a multifunctional protein associated with neural development. Loss of Ebp1 leads to upregulation of the gene silencing unit suppressor of variegation 3-9 homolog 1 (Suv39H1)/DNA (cytosine 5)-methyltransferase (DNMT1). EBP1 directly binds to the promoter region of DNMT1, repressing DNA methylation, and hence, promoting neural development. In the current study, we showed that EBP1 suppresses histone methyltransferase activity of Suv39H1 by promoting ubiquitin-proteasome system (UPS)-dependent degradation of Suv39H1. In addition, we showed that EBP1 directly interacts with Suv39H1, and this interaction is required for recruiting the E3 ligase MDM2 for Suv39H1 degradation. Thus, our findings suggest that EBP1 regulates UPS-dependent degradation of Suv39H1 to govern proper heterochromatin assembly during neural development.

FoxD2-AS1 is a prognostic factor in glioma and promotes temozolomide resistance in a O6-methylguanine-DNA methyltransferase-dependent manner

  • Shangguan, Wenbing;Lv, Xuyang;Tian, Nan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.475-482
    • /
    • 2019
  • Glioma is the most common brain tumor with a dismal prognosis. While temozolomide (TMZ) based chemotherapy significantly improves survival in glioma patients, resistance against this compound commonly leads to glioma treatment failure. Overexpression of long-noncoding RNA (LncRNA) FoxD2 adjacent opposite strand RNA 1 (FoxD2-AS1) was identified to promote glioma development, but the role in TMZ resistance remains unclear. In this paper, we found that FoxD2-AS1 was overexpressed in recurrent glioma, high FoxD2-AS1 expression was significantly correlated with poor patient outcome. Methylation of $O^6$-methylguanine-DNA methyltransferase (MGMT) is significantly less frequent in high FoxD2-AS1 expression patients. Knockdown of FoxD2-AS1 decreased the proliferation, metastatic ability of glioma cells and promote the sensitivity to TMZ in glioma cells. Furthermore, knockdown of FoxD2-AS1 induced hypermethylation of the promoter region of MGMT. Our data suggested that FoxD2-AS1 is a clinical relevance LncRNA and mediates TMZ resistance by regulating the methylation status of the MGMT promoter region.

Expression of γ-Tocopherol Methyltransferase Transgene Improves Tocopherol Composition in Lettuce (Latuca sativa L.)

  • Cho, Eun Ae;Lee, Chong Ae;Kim, Young Soo;Baek, So Hyeon;de los Reyes, Benildo G.;Yun, Song Joong
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.16-22
    • /
    • 2005
  • A cDNA encoding ${\gamma}-tocopherol$ methyltransferase (${\gamma}-TMT$) from Arabidopsis thaliana was overexpressed in lettuce (Latuca sativa L.) to improve the tocopherol composition. Seven lines of lettuce ($T_0$) containing the ${\gamma}-TMT$ transgene were produced by Agrobacterium-mediated transformation. The inheritance and expression of the transgene were confirmed by DNA and RNA gel blot analyses as well as quantification of tocopherols and ${\gamma}-TMT$ activities. The ratio of ${\alpha}-/{\gamma}-tocopherol$ content (TR) varied from 0.6 to 1.2 in non-transformed plants, while the $T_0$ plants had ratios of 0.8 to 320. The ratio ranged from 0.4 to 544 in 41 $T_1$ progenies of the $T_0$ transgenic line gTM3, and the phenotypic segregation indicated monogenic inheritance of the transgene (i.e., 3:1 = dominant:wild-type classes). There was a tight relationship between the TR phenotype and ${\gamma}-TMT$ activity, and enzyme activities were affected by the copy number and transcript levels of the transgene. The TR phenotype was stably expressed in $T_2$ progenies of $T_1$ plants. The results from this study indicated that a stable inheritance and expression of Arabidopsis ${\gamma}-TMT$ transgene in lettuce results in a higher enzyme activity and the conversion of the ${\gamma}-tocopherol$ pool to ${\alpha}-tocopherol$ in transgenic lettuce.

The Expression Patterns of AtBSMT1 and AtSAGT1 Encoding a Salicylic Acid (SA) Methyltransferase and a SA Glucosyltransferase, Respectively, in Arabidopsis Plants with Altered Defense Responses

  • Song, Jong Tae;Koo, Yeon Jong;Park, Jong-Beum;Seo, Yean Joo;Cho, Yeon-Jeong;Seo, Hak Soo;Choi, Yang Do
    • Molecules and Cells
    • /
    • v.28 no.2
    • /
    • pp.105-109
    • /
    • 2009
  • We reported previously that overexpression of a salicylic acid (SA) methyltransferase1 gene from rice (OsBSMT1) or a SA glucosyltransferase1 gene from Arabidopsis thaliana (AtSAGT1) leads to increased susceptibility to Pseudomonas syringae due to reduced SA levels. To further examine their roles in the defense responses, we assayed the transcript levels of AtBSMT1 or AtSAGT1 in plants with altered levels of SA and/or other defense components. These data showed that AtSAGT1 expression is regulated partially by SA, or nonexpressor of pathogenesis related protein1, whereas AtBSMT1 expression was induced in SA-deficient mutant plants. In addition, we produced the transgenic Arabidopsis plants with RNAi-mediated inhibition of AtSAGT1 and isolated a null mutant of AtBSMT1, and then analyzed their phenotypes. A T-DNA insertion mutation in the AtBSMT1 resulted in reduced methyl salicylate (MeSA) levels upon P. syringae infection. However, accumulation of SA and glucosyl SA was similar in both the atbsmt1 and wild-type plants, indicating the presence of another SA methyltransferase or an alternative pathway for MeSA production. The AtSAGT1-RNAi line exhibited no altered phenotypes upon pathogen infection, compared to wild-type plants, suggesting that (an)other SA glucosyltransferase(s) in Arabidopsis plants may be important for the pathogenesis of P. syringae.