Browse > Article

Expression of γ-Tocopherol Methyltransferase Transgene Improves Tocopherol Composition in Lettuce (Latuca sativa L.)  

Cho, Eun Ae (Division of Biological Resources Sciences, Chonbuk National University)
Lee, Chong Ae (Division of Agricultural Biotechnology, Chonbuk National University)
Kim, Young Soo (Division of Agricultural Biotechnology, Chonbuk National University, Institute of Agricultural Science and Technology, Chonbuk National University)
Baek, So Hyeon (National Honam Agricultural Experiment Station)
de los Reyes, Benildo G. (Department of Biological Sciences, University of Maine)
Yun, Song Joong (Division of Biological Resources Sciences, Chonbuk National University, Institute of Agricultural Science and Technology, Chonbuk National University)
Abstract
A cDNA encoding ${\gamma}-tocopherol$ methyltransferase (${\gamma}-TMT$) from Arabidopsis thaliana was overexpressed in lettuce (Latuca sativa L.) to improve the tocopherol composition. Seven lines of lettuce ($T_0$) containing the ${\gamma}-TMT$ transgene were produced by Agrobacterium-mediated transformation. The inheritance and expression of the transgene were confirmed by DNA and RNA gel blot analyses as well as quantification of tocopherols and ${\gamma}-TMT$ activities. The ratio of ${\alpha}-/{\gamma}-tocopherol$ content (TR) varied from 0.6 to 1.2 in non-transformed plants, while the $T_0$ plants had ratios of 0.8 to 320. The ratio ranged from 0.4 to 544 in 41 $T_1$ progenies of the $T_0$ transgenic line gTM3, and the phenotypic segregation indicated monogenic inheritance of the transgene (i.e., 3:1 = dominant:wild-type classes). There was a tight relationship between the TR phenotype and ${\gamma}-TMT$ activity, and enzyme activities were affected by the copy number and transcript levels of the transgene. The TR phenotype was stably expressed in $T_2$ progenies of $T_1$ plants. The results from this study indicated that a stable inheritance and expression of Arabidopsis ${\gamma}-TMT$ transgene in lettuce results in a higher enzyme activity and the conversion of the ${\gamma}-tocopherol$ pool to ${\alpha}-tocopherol$ in transgenic lettuce.
Keywords
${\gamma}$-Tocopherol Methyltransferase; Gene Transfer; Latuca sativa L.; Tocopherol;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
Times Cited By Web Of Science : 19  (Related Records In Web of Science)
연도 인용수 순위
1 Allshire, R. (2002) RNAi and heterochromatin - a hushed-up affair. Science 297, 1818-1819   DOI   ScienceOn
2 Goffman, F. D. and Becker, H. C. (2002) Genetic variation of tocopherol content in a germplasm collection of Brassica naptus L. Euphytica 125, 189-196   DOI
3 Hess, J. L. (1993) Vitamin E, $\alpha$-tocopherol; in Antioxidants in Higher Plants, Alscher, R. G. and Hess, J. L. (eds), pp. 111-134. CRC Press, Boca Raton, FL
4 Kaeppler, S. M., Kaeppler, H. F., and Rhee, Y. (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol. Biol. 43, 179-188   DOI   ScienceOn
5 Karp, A. (1995) Somaclonal variation as a tool for crop improvement. Euphytica 85, 295-302   DOI
6 Koch, M., Lemke, R., Heise, K.-P., and Mock, H.-P. (2003) Characterization of γ-tocopherol methyltransferases from Capsicum annum L and Arabidopsis thaliana. Eur. J. Biochem. 270, 84-92   DOI   ScienceOn
7 Munne-Bosch, S. and Alegre, L. (2000) Changes in carotenoids, tocopherols and diterpenes during drought and recoveryk and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta 210, 925-931   DOI
8 Stitt, M. and Sonnewald, U. (1995) Regulation of metabolism in transgenic plants. Ann. Rev. Plant Physiol. Mol. Biol. 46, 341-368   DOI
9 Wolters, A. M. and Visser, R. G. (2000) Gene silencing in potato:allelic differences and effect of ploidy. Plant Mol. Biol. 43, 377-386   DOI   ScienceOn
10 Sheppard, A. J. and Pennington, A. T. (1993) Analysis and distribution of vitamin E in vegetable oils and foods; in Vitamin E in Health and Disease, Packer, L. and Fuchs, J. (eds.), pp. 9-31, Marcel Dekker, New York
11 Speek, A. J., Schrijver, J., and Schreurs, W. H. P. (1985) Vitamin E composition of some seed oils as determined by highperformance liquid chromatography with fluorometric determination. J. Food Sci. 50, 121-124   DOI
12 Grusak, M. A. (1999) Genomics-assisted plant improvement to benefit human nutritional health. Trend. Plant Sci. 4, 164-166   DOI   ScienceOn
13 FAOSTAT database. 2003. FAO (http://apps.fao.org/)
14 Prasad, K. N., Kumar, A., Kochupillai, V., and Cole, W. C. (1999) High doses of multiple antioxidant vitamins: essential ingredients in improving the efficacy of standard cancer therapy. J. Am. College Nutr. 18, 13-25
15 Camara, B., Bardat, F., Seye, A., d'Harlingue, A., and Noneger, R. (1982) Terpenoid metabolism in plastids. Localization of $\alpha$-tocopherol synthesis in Capsicum chromoplasts. Plant Physiol. 70, 1562-1563   DOI   ScienceOn
16 Hofius, D. and Sonnewald, U. (2003) Vitamin E biosynthesis:biochemistry meets cell biology. Trends Plant Sci. 8, 6-8   DOI   ScienceOn
17 Hirschberg, J. (1999) Production of high-value compounds:carotenoids and vitamin E. Cur. Opin. Biotech. 10, 186-191   DOI   ScienceOn
18 Institute of Medicine (IOM) (2000) Dietary Reference Intake for Vitamin C, Vitamin E, Selenium, and Carotenoids. National Academy Press, Washington, D.C
19 Chandler, V. and Vaucheret, H. (2001) Gene activation and gene silencing. Plant Physiol. 125, 145-148   DOI   ScienceOn
20 Kamal-Eldin, A. and Appelqvist, L. A. (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31, 671-701   DOI
21 Keegstra, K. and Yousif, A. E. (1986) Isolation and characterization of chloroplast envelope membranes. Methods Enzymol. 118, 316-325   DOI
22 Pryor, W. A. (2000) Vitamin E and heart disease: basic science to clinical intervention trials. Free Radic. Biol. Med. 28, 141-164   DOI   ScienceOn
23 Roger, S. O. and Bendich, A. J. (1988) Extraction of DNA from plant tissues; in Plant Molecular Biology Manual, Gelvin, S. B., Schilperoort, R. A., and Verma, D. P. S. (eds.), pp. A6,1-10. Kluwer Academic Publishers, Dordrecht
24 De Wilde, C., Van Houdt, H., De Buck, S., Angenon, G., De Jaeger, G., et al. (2000) Plants as bioreactors for protein production: avoiding the problem of transgene silencing. Plant Mol. Biol. 43, 347-359   DOI   ScienceOn
25 d'Harlingue, A. and Camara, B. (1985) Plastid enzymes of terpenoid biosynthesis. Purification and characterization of gamma-tocopherol methyltransferase from Capsicum chromoplasts. J. Biol. Chem. 260, 15200-15203
26 Fryer, M. J. (1992) The antioxidant effects of thylakoid vitamin E (${\alpha}$-tocopherol). Plant Cell Environ. 15, 381-392   DOI
27 Munne-Bosch, S. and Alegre, L. (2002) The function of tocopherols and tocotrienols in plants. Crit. Rev. Plant Sci. 21, 31-57
28 Chung E. C., Seong, E., Kim, Y. C., Chung, E. J., Oh, S. K., et al. (2004) A method of high frequency virus-induced gene silencing in Chili pepper (Capsicum annuum L. cv. Bukang). Mol. Cells 17, 377-380
29 Shintani, D. and DellaPenna, D. (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282, 2098-2100   DOI   ScienceOn
30 Kaeppler, S. M. and Phillips, R. L. (1993) Tissue cultureinduced DNA methylation variation in maize. Proc. Natl. Acad. Sci. USA 90, 8773-8776
31 Sano, M., Ernesto, C., Thomas, R. G., Klauber, M. R., Schafer, K., et al. (1997) A controlled trial of selegiline, alphatocopherol, or both as treatment for Alzheimer's disease. The Alzheimer's Disease Cooperative Study. N. Engl. J. Med. 336, 1216-1222   DOI   ScienceOn
32 Adachi, N., Migita, M., Ohta, T., Higashi, A., and Matsuda, I. (1997) Depressed natural killer cell activity due to decreased natural killer cell population in a vitamin E-deficient patient with Shwachman syndrome: reversible natural killer cell abnormality by alpha-tocopherol supplementation. Eur. J. Pediatr. 156, 444-448   DOI
33 Kim, M. J., Baek, S. H., Yoo, N. H., and Yun, S. J. (2000) Transformation of Arabidopsis gamma-tocopherol methyltransferase into lettuce (Lactuca sativa L.). Korean J. Plant Tissue Culture 27, 435-439   과학기술학회마을