References
- Marciano-Cabral F, Cabral G. Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev 2003; 16: 273-307. https://doi.org/10.1128/CMR.16.2.273-307.2003
- Moon EK, Xuan YH, Chung DI, Hong Y, Kong HH. Microarray analysis of differentially expressed genes between cysts and trophozoites of Acanthamoeba castellanii. Korean J Parasitol 2011; 49: 341-347. https://doi.org/10.3347/kjp.2011.49.4.341
- Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol 2010; 28: 1057-1068. https://doi.org/10.1038/nbt.1685
- Kirmizis A, Santos-Rosa H, Penkett CJ, Singer MA, Vermeulen M, Mann M, Bahler J, Green RD, Kouzarides T. Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation. Nature 2007; 449: 928-932. https://doi.org/10.1038/nature06160
- Bedford MT, Clarke SG. Protein arginine methylation in mammals: who, what, and why. Mol Cell 2009; 33: 1-13. https://doi.org/10.1016/j.molcel.2008.12.013
- Pahlich S, Zakaryan RP, Gehring H. Protein arginine methylation: cellular functions and methods of analysis. Biochim Biophys Acta 2006; 1764: 1890-1903. https://doi.org/10.1016/j.bbapap.2006.08.008
- Niewmierzycka A, Clarke S. S-adenosylmethionine-dependent methylation in Saccharomyces cerevisiae. Identification of a novel protein arginine methyltransferase. J Biol Chem 1999; 274: 814-824. https://doi.org/10.1074/jbc.274.2.814
- Pawlak MR, Scherer CA, Chen J, Roshon MJ, Ruley HE. Arginine N-methyltransferase 1 is required for early postimplantation mouse development, but cells deficient in the enzyme are viable. Mol Cell Biol 2000; 20: 4859-4869. https://doi.org/10.1128/MCB.20.13.4859-4869.2000
- Krause CD, Yang ZH, Kim YS, Lee JH, Cook JR, Pestka S. Protein arginine methyltransferases: evolution and assessment of their pharmacological and therapeutic potential. Pharmacol Ther 2007; 113: 50-87. https://doi.org/10.1016/j.pharmthera.2006.06.007
- Katsanis N, Yaspo ML, Fisher EM. Identification and mapping of a novel human gene, HRMT1L1, homologous to the rat protein arginine N-methyltransferase 1 (PRMT1) gene. Mamm Genome 1997; 8: 526-529. https://doi.org/10.1007/s003359900491
- Nicholson TB, Chen T, Richard S. The physiological and pathophysiological role of PRMT1-mediated protein arginine methylation. Pharmacol Res 2009; 60: 466-474. https://doi.org/10.1016/j.phrs.2009.07.006
- Kraus WL, Wong J. Nuclear receptor-dependent transcription with chromatin. Is it all about enzymes? Eur J Biochem 2002; 269: 2275-2283. https://doi.org/10.1046/j.1432-1033.2002.02889.x
- Fan Q, Miao J, Cui L, Cui L. Characterization of PRMT1 from Plasmodium falciparum. Biochem J 2009; 421: 107-118. https://doi.org/10.1042/BJ20090185
- Borbolla-Vazquez J, Orozco E, Betanzos A, Rodriguez MA. Entamoeba histolytica: protein arginine transferase 1a methylates arginine residues and potentially modify the H4 histone. Parasit Vectors 2015; 8: 219. https://doi.org/10.1186/s13071-015-0820-7
- Bowers B, Korn ED. The fine structure of Acanthamoeba castellanii (Neff strain). II. Encystment. J Cell Biol 1969; 41: 786-805. https://doi.org/10.1083/jcb.41.3.786
- Aqeel Y, Siddiqui R, Khan NA. Silencing of xylose isomerase and cellulose synthase by siRNA inhibits encystation in Acanthamoeba castellanii. Parasitol Res 2013; 112: 1221-1127. https://doi.org/10.1007/s00436-012-3254-6
- Moon EK, Hong Y, Chung DI, Kong HH. Cysteine protease involving in autophagosomal degradation of mitochondria during encystation of Acanthamoeba. Mol Biochem Parasitol 2012; 185: 121-126. https://doi.org/10.1016/j.molbiopara.2012.07.008
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402-408. https://doi.org/10.1006/meth.2001.1262
- Moon EK, Hong Y, Chung DI, Goo YK, Kong HH. Identification of protein arginine methyltransferase 5 as a regulator for encystation of Acanthamoeba. Korean J Parasitol 2016; 54: 133-1338. https://doi.org/10.3347/kjp.2016.54.2.133
- Litt M, Qiu Y, Huang S. Histone arginine methylations: their roles in chromatin dynamics and transcriptional regulation. Biosci Rep 2009; 29: 131-141. https://doi.org/10.1042/BSR20080176
- Di Lorenzo A, Bedford MT. Histone arginine methylation. FEBS Lett 2011; 585: 2024-2031. https://doi.org/10.1016/j.febslet.2010.11.010
- Mansure JJ, Furtado DR, de Oliveira FM, Rumjanek FD, Franco GR, Fantappie MR. Cloning of a protein arginine methyltransferase PRMT1 homologue from Schistosoma mansoni: evidence for roles in nuclear receptor signaling and RNA metabolism. Biochem Biophys Res Commun 2005; 335: 1163-1172. https://doi.org/10.1016/j.bbrc.2005.07.192
- Wang H, Huang ZQ, Xia L, Feng Q, Erdjument-Bromage H, Strahl BD, Briggs SD, Allis CD, Wong J, Tempst P, Zhang Y. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 2001; 293: 853-857. https://doi.org/10.1126/science.1060781
- Pal S, Vishwanath SN, Erdjument-Bromage H, Tempst P, Sif S. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol Cell Biol 2004; 24: 9630-9645. https://doi.org/10.1128/MCB.24.21.9630-9645.2004
Cited by
- Free-living amoebae and squatters in the wild: ecological and molecular features vol.43, pp.4, 2017, https://doi.org/10.1093/femsre/fuz011
- Drug Discovery against Acanthamoeba Infections: Present Knowledge and Unmet Needs vol.9, pp.5, 2017, https://doi.org/10.3390/pathogens9050405
- Comparative analysis of differentially expressed genes in Acanthamoeba after ingestion of Legionella pneumophila and Escherichia coli vol.232, pp.None, 2017, https://doi.org/10.1016/j.exppara.2021.108188