• Title/Summary/Keyword: DNA dyes

Search Result 31, Processing Time 0.039 seconds

Response of Bioluminescent Bacteria to Sixteen Azo Dyes

  • Lee, Hwa-Young;Park, Sue-Hyung;Gu, Man-Bock
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.101-105
    • /
    • 2003
  • Recombinant bioluminescent bacteria were used to monitor and classify the to xicity of azo dyes. Two constitutive bioluminescent bacteria, Photobacterium phosphoreum and Es-Cherichia coli, E, coli GC2 (lac::luxCOABE), were used to detect the cellular toxicity of the azo dyes. In addition, four stress-inducible bioluminestent E. coli, DPD2794 (recA::luxCDABE), a DNA damage Sensitive strain; DPD2540 (fabA::luxCDABE), a membrane damage sensitive strain; DPD2511 (katG::luxCDABE), an oxidative damage sensitive strain; and TV1061 (grpE::luxCDABE), a protein damage sensitive strain, were used to provide information about the type of toxicity caused by crystal violet, the most toxic dye of the 16 azo dyes tested. These results suggest that azo dyes result in serious cellular toxicity in bacteria, and that toxicity monitoring and classific ation of some azo dyes, In the field, may be possible using these recombinant bioluminescent bacteria.

Balanced Experimental Designs for cDNA Microarray data

  • Choi, Kuey-Chung
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.121-129
    • /
    • 2006
  • Two color or cDNA microarrays are extensively used to study relative expression levels of thousands of genes simultaneously. 0かy two tissue samples can be hybridized on a single microarray slide. Thus, a microarray slide necessarily forms an incomplete block design with block size two when more than two tissue samples are under study. We also need to control for variability in gene expression values due to the two dyes. Thus, red and green dyes form the second blocking factor in addition to slides. General design problem for these microarray experiments is discussed in this paper. Designs for factorial cDNA microarrays are also discussed.

  • PDF

Application of the $^{32}$P-Postlabelling Technique : A Study on Detection of DNA Adduct Induced by Azo Dyes rind Flavonoid Compounds ($^{32}$P-Postlabelling 방법의 응용 : Azo색소 및 Flavonoid화합물에 의해 유도되는 DNA Adduct의 겸출에 관한 연구)

  • 김재현;박창원;박정식;홍연탁;김효정;이주한;이헌수;이동권
    • Biomolecules & Therapeutics
    • /
    • v.1 no.1
    • /
    • pp.58-64
    • /
    • 1993
  • DNA addicts induced by putative chemical related to carcinogenesis were detected and determined by $^{32}$P-Postlabelling assay after exposure of 4 compounds comprising two auto dyes (amaranth, new coccine) and two flavonoid compounds (rutin, quercetin) to ICR mouse. DNA was isolated from mouse liver and digested enzymatically to deoxyribonucleoside 3'-monophosphate. The postincubation of DNA digests with nuclease Pl before $^{32}$P-labelling enhanced the technique's sensitivity. Nuclease Pl cleaves deoxyribonucleoside 3'-mono-phosphates of normal nucleotides to deoxyrihonucleosides which do not serve as substrates for polynucleotide kinase, while most of addicts were found to be totally or partially resistant to the 3'-dephosphorylating action of nuclease Pl. The adducted deoxyribonucleoside 3'-monophosphate was converted to 5'-$^{32}$P-labelled deoxynucleoside 3',5'-bisphosphate by T4 polynucleotide kinase. The nucleotides were separated by anion-exchange thin layer chromatography(TLC) on polyethyleneimine cellulose by 4-dimensional or 2-dimensional TLC then detected by autoradiography. The results show that DNA addicts were detected in liver DNA of ICR mouse after administration of amaranth and quercetin by 2-dimensional and/or 4-dimensional TLC.

  • PDF

The synthesis and light absorbing properties of heptamethine cyanine chromophores based on benzoxazole derivatives

  • Youn, Hye-Soo;Park, Soo-Youl;Shin, Seung-Rim;Shin, Joung-Il;Oh, Seong-Geun;Jun, Kun
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.10a
    • /
    • pp.133-134
    • /
    • 2008
  • A novel near infrared(NIR) absorbing dyes were synthesized by using bis-aldehyde formyl aromatic compounds and heteroaryl derivatives with the reactive methylene group. These dyes provided a range of the NIR wavelength region about 720 nm value. Also, the light absorbing properties of these dyes were investigated in our experiment results. In generally, these NIR colorants may be potential used for optical recording media, DNA sequencing probe and laser beam printings.

  • PDF

Use of DNA-Specific Anthraquinone Dyes to Directly Reveal Cytoplasmic and Nuclear Boundaries in Live and Fixed Cells

  • Edward, Roy
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.391-396
    • /
    • 2009
  • Image-based, high-content screening assays demand solutions for image segmentation and cellular compartment encoding to track critical events - for example those reported by GFP fusions within mitosis, signalling pathways and protein translocations. To meet this need, a series of nuclear/cytoplasmic discriminating probes have been developed: DRAQ5$^{TM}$ and CyTRAK Orange$^{TM}$. These are spectrally compatible with GFP reporters offering new solutions in imaging and cytometry. At their most fundamental they provide a convenient fluorescent emission signature which is spectrally separated from the commonly used reporter proteins (e.g. eGFP, YFP, mRFP) and fluorescent tags such as Alexafluor 488, fluorescein and Cy2. Additionally, they do not excite in the UV and thus avoid the complications of compound UV-autofluorescence in drug discovery whilst limiting the impact of background sample autofluorescence. They provide a convenient means of stoichiometrically labelling cell nuclei in live cells without the aid of DMSO and can equally be used for fixed cells. Further developments have permitted the simultaneous and differential labelling of both nuclear and cytoplasmic compartments in live and fixed cells to clearly render the precise location of cell boundaries which may be beneficial for quantitative expression measurements, cell-cell interactions and most recently compound in vitro toxicology testing.

An Ultrasensitive FRET-based DNA Sensor via the Accumulated QD System Derivatized in the Nano-beads

  • Yang, Lan-Hee;Ahn, Dong June;Koo, Eunhae
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.340-347
    • /
    • 2018
  • $F{\ddot{o}}rster$ resonance energy transfer (FRET) is extremely sensitive to the separation distance between the donor and the acceptor which is ideal for probing such biological phenomena. Also, FRET-based probes have been developing for detecting an unamplified, low-abundance of target DNA. Here we describe the development of FRET based DNA sensor based on an accumulated QD system for detecting KRAS G12D mutation which is the most common mutation in cancer. The accumulated QD system consists of the polystyrene beads which surface is modified with carboxyl modified QDs. The QDs are sandwich-hybridized with DNA of a capture probe, a reporter probe with Texas-red, and a target DNA by EDC-NHS coupling. Because the carboxyl modified QDs are located closely to each other in the accumulated QDs, these neighboring QDs are enough to transfer the energy to the acceptor dyes. Therefore the FRET factor in the bead system is enhancing by the additional increase of 29.2% as compared to that in a single QD system. These results suggest that the accumulated nanobead probe with conjugated QDs can be used as ultrasensitive DNA nanosensors detecting the mutation in the various cancers.

Single-molecule Detection of Fluorescence Resonance Energy Transfer Using Confocal Microscopy

  • Kim, Sung-Hyun;Choi, Don-Seong;Kim, Do-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.107-111
    • /
    • 2008
  • We demonstrated single-molecule fluorescence resonance energy transfer (FRET) from single donor-acceptor dye pair attached to a DNA with a setup based on a confocal microscope. Singlestrand DNAs were immobilized on a glass surface with suitable inter-dye distance. Energy transfer efficiency between the donor and the acceptor dyes attached to the DNA was measured with different lengths of DNA. Photobleaching of single dye molecule was observed and used as a sign of single-molecule detection. We could achieve high enough signal-to-noise ratio to detect the fluorescence from a single-molecule, which allows real-time observation of the distance change between single dye pairs in nanometer scale.

Counterion-dye staining method for DNA in agarosegels using indoine blue and methyl orange

  • Hwang, Sun-Young;Jin, Li-Tai;Yoo, Gyurng-Soo;Choi, Jung-Kap
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.142.1-142.1
    • /
    • 2003
  • Sensitive and safe method for visualization of DNA in agarose gels using visible dye is described. To improve the sensitivity, we studied a counterion-dye staining method using methyl orange as a counterion-dye which contributes to reduce excessive background staining by indoine blue. Dye concentrations, PH of staining solution, mixing molar ratio of two dyes, and staining times were optimized for the counterion-dye staining. By the staining with a mixed solution of 0.005% indoine blue and 0.00165% methyl orange in 10% ethanol 0.2M sodium acetate, 8 ng of the 3 kb DNA in an agarose gel was detected within 1hr. (omitted)

  • PDF

FRET-Based Quantitative Discrimination of Bisulfite-Untreated DNA from Bisulfite-Treated DNA

  • Lee, Eun Jeong;Cho, Yea Seul;Song, Seongeun;Hwang, Sang-Hyun;Hah, Sang Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1455-1459
    • /
    • 2014
  • We report a sensitive and reliable FRET-based nanotechnology assay for efficient detection and quantification of bisulfite-unmodified or modified DNA. Bisulfite-untreated DNA or bisulfite-treated DNA is subjected to PCR amplification with biotin-conjugated primers so that the amounts of bisulfite-untreated and treated DNA can be differentiated. Streptavidin-coated quantum dots (QDs) are used to capture biotinylated PCR products intercalated with SYBR Green, enabling FRET measurement. Key features of our method include its low intrinsic background noise, high resolution, and high sensitivity, enabling detection of as little as 1.75 ng of bisulfite-untreated DNA in the presence of an approximately 1,000-fold excess of bisulfite-untreated DNA compared to bisulfate-treated DNA, with the use of PCR reduced (as low as 15 cycles). SYBR Green as an intercalating dye as well as a FRET acceptor allows for a single-step preparation without the need for primers or probes to be chemically conjugated to an organic fluorophore. Multiple acceptors per FRET donor significantly enhance the signal-to-noise ratio as well. In consideration of the high relevance of bisulfite treatment to DNA methylation quantitation, our system for FRET measurement between QDs and intercalating dyes can be generally utilized to analyze DNA methylation and to potentially benefit the scientific and clinical community.

A Study on the Fluorescence Characteristics of Dye-doped Silica Nanoparticles for Integrated Bio Imaging (융합 바이오 이미징을 위한 염료 도핑 된 실리카 나노입자의 형광 특성에 관한 연구)

  • Kim, Ki-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.5
    • /
    • pp.45-50
    • /
    • 2018
  • The functional nanomaterials of fluorescent dye-doped silica nanoparticles(NPs) are applied to bio applications such as bio-labeling of DNA micro-array, and bio-imaging. Organic dye-doped fluorescent silica NPs exhibit excellent bio-compatibility, non-toxic, and highly hydrophilic properties. In this study, organic fluorescent dyes were dissolved in ethanol, and deionized(DI) water. Organic fluorescent dyes were physically adsorbed to silica NPs and chemically doped to silica NPs. The fluorescence characteristics(FLC) was investigated by UV lamp irradiation of 365 nm wavelength. As results, the FLC of dye-doped silica NPs exhibits better than dye-adsorbed silica NPs and the FLC was improved with the increase of concentration of doped-dyes. The fluorescent organic dyes were well dissolved in ethanol than DI water. The photostability of dye-doped silica NPs was superior than pure fluorescent organic dye. The FLC of optimized dye-doped silica NPs would be applied to agent of non-invasive fluorescence bio-imaging in live cell and in vivo.